
Fully Understanding Generic Objects:
Modeling, Segmentation, and Reconstruction

— Supplementary Material

Feng Liu Luan Tran Xiaoming Liu
Michigan State University, East Lansing MI 48824
{liufeng6, tranluan, liuxm}@msu.edu

In this supplementary material, we provide:
i) Implementation details, including
� Training details;
� Network structures;
� Linear search and linear-binary search algorithms.
ii) Additional experimental results, including
� Expressiveness;
� Over-fitting problem study;
� Additional qualitative performances on 3D segmenta-

tion, reconstruction and image decomposition.

1. Implementation Details
1.1. Training Details

Data Preparation.
Following the work [1], we first obtain color voxeliza-

tion in different resolutions (163×3, 323×3, 643×3) for
ShapeNet 3D models. Fig. 1 shows two examples of 643×3
colored voxel. Then, similar to the sampling strategy of [3],
we obtain the triple data {xj , oj , cj}Kj=1 offline for each col-
ored voxel. x, o, c are the spatial point and the correspond-
ing occupancy label and albedo.

Figure 1. Color voxelization of ShapeNet models. Original 3D
mesh (left) and 643 × 3 colored voxel (right).

Table 1. Training process.
Network Training data Loss

Stage 1 E ′, DS , DA
643 × 3 colored voxels and

sampled point-values L1

Stage 2 E , DA synthetic images L2

Stage 3 E , DA real images L3

Training Process.
We summarize the training process in Tab. 1. In

stage 1, we adopt a progressive training technique [3], to
train our model on gradually increasing resolution data
(163→323→643), which stabilizes and significantly speeds
up the training process.
Hyperparameters.

In our experiments, we set lC = 3, lS = 256 and lA =
256. We set λ1 = 1, λ2 = 0.1, λ3 = 10, λC = 1, λS = 5,
λA = 5, λP = 10 to balance the losses. We set q = 50 in
the local feature extraction. Adam optimizer is used with a
learning rate of 0.0001 in all stages.

1



1.2. Network Structures

Colored Voxel Encoder E ′.
To auto-encode 3D shape and albedo simultaneously, we

adopt a 3D CNN [2,3] as encoder E ′ to learn the embedding
category, shape and albedo features fC , fS , fA from 643× 3
colored voxel. The architecture of E ′ is depicted in Tab. 2.

Table 2. Colored voxel encoder network structure.

Layer Kernel size Stride
Activation
function

Output size
(d1,d2,d3,C)

input - - - (64, 64, 64, 3)
conv3d (4, 4, 4) (2, 2, 2) LReLU (32, 32, 32, 32)
conv3d (4, 4, 4) (2, 2, 2) LReLU (16, 16, 16, 64)
conv3d (4, 4, 4) (2, 2, 2) LReLU (8, 8, 8, 128)
conv3d (4, 4, 4) (2, 2, 2) LReLU (4, 4, 4, 256)
conv3d (4, 4, 4) (1, 1, 1) - (1, 1, 1, 515)
fC - - - 3
fS - - - 256
fA - - - 256

Image Encoder E .
As shown in Tab. 3, we use a modified ResNet-18 archi-

tecture, which was pre-trained on ImageNet, as our image
encoder. However, we adjust the last fully-connected layer
to project the features to four embeddings L, P, fS and fA.

Table 3. Image encoder network structure (slightly modified from
ResNet-18).

Layer Kernel size Stride Activation function Input size Output size
input - - - - (128, 128, 3)
conv1 (7, 7) (2, 2) BN, LReLU (128, 128, 3) (32, 32, 64)
conv2 (ResNet block) (3, 3) - - (32, 32, 64) (32, 32, 64)
conv3 (ResNet block) (3, 3) - - (32, 32, 64) (16, 16, 128)
conv4 (ResNet block) (3, 3) - - (16, 16, 128) (8, 8, 256)
conv5 (ResNet block) (3, 3) - - (8, 8, 256) (4, 4, 512)
average pool (4, 4) - - (4, 4, 512) (1, 1, 512)
FCL - - - 512 27
FCP - - - 512 12
FCfC - - - 512 3
FCfS - - - 512 256
FCfA - - - 512 256

Shape and Albedo Decoders DS ,DA.
The shape decoder architecture is followed the work

of [2] (unsupervised case). The network takes shape latent
representation fS and a spatial point (x, y, z) as inputs. It
is composed of 3 fully connected layers each of which is
applied with Leaky ReLU, except the final output is applied
Sigmoid activation (Fig. 2). The albedo decoder architec-
ture is similar, with only two differences. The inputs to the
network have an additional vector, albedo latent represen-
tation fA. The output is applied Tanh activation. Fig. 3
depicts the albedo decoder architecture.

Figure 2. The shape decoder network is composed of 3 fully con-
nected layers, denotes as “FC”. The fC (3-dim), fS (256-dim) are
concatenated, denoted “+”, with the xyz query, making a 262-dim
vector, and is provided as input to the first layer. The Leaky ReLU
activation is applied to the fist 2 FC layers while the final value is
obtained with Sigmoid activation.

Figure 3. The albedo decoder network is composed of 6 fully con-
nected layers. Specifically, it takes the point coordinate (x, y, z),
along with fC , fS , fA, and outputs the RGB color values. The
Leaky ReLU activation is applied to the fist 5 FC layers while the
final value is obtained with Tanh activation.

2



1.3. Linear Search and Linear-Binary Search Algo-
rithms

For efficient network training, instead of finding exact
surface points, we approximate them using Linear search or
Linear-Binary search (Fig. 4). The detailed algorithms for
Linear Search and Linear-Binary Search are represented in
Algorithm 1 and 2 respectively.

Empirically, with the same number of evaluating steps,
the proposed Linear-Binary search better approximates the
object surface. This is demonstrated on render images of
surface normals (Fig. 5). While the ad-hoc Linear search
approach leads to artifacts, Linear-Binary search results in
smooth continuous surfaces.

(a) Linear Search (b) Linear-Binary Search

Figure 4. Ray tracing for surface points detection. In Linear
search, candidates (red points) are uniformly distributed in the
grid. In Linear-Binary search, after the first point inside the ob-
ject found, Binary search will be used between the last outside
point and current inside point for all remaining iterations.

(a)

(b)

Figure 5. Compare surface normal rendering quality of (a) Linear
vs. (b) Linear-Binary search. With the same computation budget,
Linear-Binary search better approximates surface points, which
leads to smooth normal computation meanwhile Linear search
causes artifacts on rendering, which spoils model training.

Algorithm 1: Linear Search Ray Tracing
input : Shape decoderDS , projection P, error margin ε, image size

W,H
output:W×H surface points Xfinal

// Step 1: Generate candidate grid
1 Xboundary ← [[−1,−1,−1], [−1,−1, 1], [−1, 1,−1], [−1, 1, 1], ...

[1,−1,−1], [1,−1, 1], [1, 1,−1], [1, 1, 1]];
2 Uboundary ← apply projection(P,Xboundary);
3 dmin ← min(Uboundary[:, 2]);
4 dmax ← max(Uboundary[:, 2]);
5 d← (dmin : dmax : ε);
6 Ucandidate ← meshgrid((1 : W ) ∗ d, (1 : H) ∗ d,d);
7 Xcandidate ← apply projection(P−1,Ucandidate);
// Step 2: Surface point selection
// Step 2.1: Select first surface point (o > 0.5)

8 for k ← d 1ε e to 1 do
// Evaluate the occupancy field

9 Xcurr candidate ← Xcandidate[:, :, k]);
10 Ocurr ← DS(fS ,Xcurr candidate);

// Selection (As backward tracing, the last
selected point is the closest to the camera

11 Xfinal[Ocurr > 0.5]← Xcurr candidate[Ocurr > 0.5];
12 O[:, :, k]← Ocurr;

// Step 2.2: Select largest closest point to the
surface for the background

13 Xclosest ← Xcandidate[argmax(O, axis = 2)];
14 Xfinal[Xfinal = 0]← Xclosest[Xfinal = 0];

Algorithm 2: Linear-Binary Search Ray Tracing
input : Shape decoderDS , projection P, error margin ε, image size

W,H
output:W×H surface points Xfinal

// Step 1: Calculate initial position and ray
direction

1 Xboundary ← [[−1,−1,−1], [−1,−1, 1], [−1, 1,−1], [−1, 1, 1], ...
[1,−1,−1], [1,−1, 1], [1, 1,−1], [1, 1, 1]];

2 Uboundary ← apply projection(P,Xboundary);
3 dmin ← min(Uboundary[:, 2]);
4 dmax ← max(Uboundary[:, 2]);
5 d← (dmin : dmax : ε);
6 Uinit ← meshgrid((1 : W ) ∗ d, (1 : H) ∗ d,d);
7 Xinit ← apply projection(P−1,Uinit);
8 Xinit v ← cal direction(P);
// Step 2: Surface point selection

9 Omax ← 0;
10 Oargmax ← 0;
11 Xfinal ← Xinit;
12 for k ← 1 to d 1ε e do

// Evaluate the occupancy field
13 Xcurr candidate ← Xfinal + Xinit v;
14 Ocurr ← DS(fS ,Xcurr candidate);

// Move outside points forward
15 Xfinal[Ocurr < 0.5]← Xfinal[Ocurr < 0.5]+Xinit v[Ocurr < 0.5];

// Reduce velocity of inside points for binary
search

16 Xinit v[Ocurr ≥ 0.5]← Xinit v[Ocurr ≥ 0.5]/2;

// Update max occupancy value
17 Omax[Ocurr > Omax]← Ocurr[Ocurr > Omax];
18 Oargmax[Ocurr > Omax]← Xfinal[Ocurr > Omax];

// Update background spatial points
19 Xfinal[Omax < 0.5]← Oargmax[Omax < 0.5];

3



2. Additional Experimental Results
2.1. Expressiveness

Given our disentangled intrinsic 3D representations, we
are able to manipulate any individual component describing
the image.

Figure 6. Linear interpolation of two objects within the same cat-
egory in shape latent space.

For example, changing P allows us to virtually rotate
the object or alternative L can switch the image lighting.
Here we demonstrate our ability to interpolate between two
objects. We can interpolate objects in shape/albedo latent
space αf (1)S/A + (1 − α)f

(2)
S/A (α ∈ [0,1]) within the same

category (Fig. 6 and 7).

Figure 7. Linear interpolation of two objects within the same cat-
egory in albedo space.

4



Figure 8. Linear interpolation of objects’ shape in category latent space.

Further, the trained single universal model also allows
us to show the interpolation performance across different
categories. Fig. 8 shows object interpolation in category
latent space αf (1)C +(1−α)f (2)C (α ∈ [0,1]), while having the
same shape latent code. It can be observed that our model
allows us to synthesize 3D object with new shape, albedo
and even category by sampling the latent spaces.

2.2. Over-Fitting Problem Study

Reconstruction implies reasoning about the 3D structure
of the input image using cues such as texture, shading, and
perspective effects. Recently, the work of [5] argues that
most of reconstruction methods do not actually perform re-
construction but retrieve due to they only simply map the
input image to 3D space through a latent representation.
Thanks to the combination of 3D decomposition and mod-
eling, our framework does learn both high-level semantic
understanding and low-level image cues from images.

To further prove that, we provide evidences that our
model does not actually overfit to training shapes, nor treat
3D reconstruction as a retrieval problem. We statistically
evaluate the distance between the latent codes (combination
of fC and fS) of train and test samples together with their
corresponding closet pre-learned ground-truth latent codes.
As shown in Fig. 9, we visualize the distribution of distance
scores for the testing and training samples. It is obvious that
the distributions of training and testing features are similar,
which indicates our model does not perform retrieval. If
we performed retrieval, the test sample distribution would
move to the origin of the x-axis and be very close to zero.

2.3. Additional Qualitative Performances

3D Image Decomposition.
We provide several 3D image decomposition results on

real-world car images (see Fig. 10). Our framework pro-

Figure 9. Distribution of nearest distance of latent features (com-
bination of fC and fS) for 13 categories. Blue: training samples;
Red: testing samples.

duces good visual decompositions for real images.
Branched Albedo Visualization. We assign a color for the
output of each branch of our shape decoder and reasonable
parts are obtained. Since our segmentation is unsupervised
and the model for each category is trained separately, our
results are not guaranteed to produce the same part counts
for all categories. Fig. 11 shows the estimations of albedo
colors of valid branches. The albedo branches do represent
the dominant albedo colors of the objects.
Reconstruction Comparisons on Synthetic and Real Im-
ages. Fig. 12 shows more qualitative comparisons with
Front2Back method [8] (F2B, CVPR 20’) on 13 categories
of ShapeNet. Obviously, our model is able to estimate 3D
shapes that closely resemble the ground truth shapes. To
provide more comprehensive comparisons on the 3D recon-
struction quality. We provide more reconstruction results on
Pascal3D+ [7] (Fig. 13) and Pix3D [4] datasets (Fig. 14).
Comparison is made with ShapeHD [6] using trained model
provided by the authors.

References
[1] Kevin Chen, Christopher B Choy, Manolis Savva, Angel X

Chang, Thomas Funkhouser, and Silvio Savarese. Text2shape:

5



Input Recon. Albedo Normal Shading

Figure 10. 3D image decomposition on real-world car images. Our
work decomposes a 2D image of generic objects into albedo, com-
pleted 3D shape and illumination.

Generating shapes from natural language by learning joint em-
beddings. In ACCV, 2018.

[2] Zhiqin Chen, Kangxue Yin, Matthew Fisher, Siddhartha
Chaudhuri, and Hao Zhang. BAE-NET: Branched autoen-
coder for shape co-segmentation. In ICCV, 2019.

[3] Zhiqin Chen and Hao Zhang. Learning implicit fields for gen-
erative shape modeling. In CVPR, 2019.

[4] Xingyuan Sun, Jiajun Wu, Xiuming Zhang, Zhoutong Zhang,
Chengkai Zhang, Tianfan Xue, Joshua B Tenenbaum, and
William T Freeman. Pix3D: Dataset and methods for single-
image 3D shape modeling. In CVPR, 2018.

[5] Maxim Tatarchenko, Stephan R Richter, René Ranftl, Zhuwen
Li, Vladlen Koltun, and Thomas Brox. What do single-view

Figure 11. Visualization of albedo branch outputs. We render the
albedo with reconstructed mesh.

3D reconstruction networks learn? In CVPR, 2019.
[6] Jiajun Wu, Chengkai Zhang, Xiuming Zhang, Zhoutong

Zhang, William T Freeman, and Joshua B Tenenbaum. Learn-
ing shape priors for single-view 3D completion and recon-
struction. In ECCV, 2018.

[7] Yu Xiang, Roozbeh Mottaghi, and Silvio Savarese. Beyond
pascal: A benchmark for 3D object detection in the wild. In
WACV, 2014.

[8] Yuan Yao, Nico Schertler, Enrique Rosales, Helge Rhodin,
Leonid Sigal, and Alla Sheffer. Front2Back: Single view 3D
shape reconstruction via front to back prediction. In CVPR,
2020.

6



Input image F2B [8] Proposed Ground-truth Input image F2B [8] Proposed Ground-truth

Figure 12. Reconstruction comparison with Front2Back method [8] (F2B) of 13 categories on ShapeNet. Our reconstructions more closely
match the ground-truth shapes.

7



Input image ShapeHD [6] Proposed Input image ShapeHD [6] Proposed Input image ShapeHD [6] Proposed

Figure 13. Additional 3D reconstruction results on Pascal3D+ [7] dataset. Compared to ShapeHD [6], our method reconstructs 3D shape
with more details.

8



Input image ShapeHD [6] Proposed Ground-truth Input image ShapeHD [6] Proposed Ground-truth

Figure 14. Additional 3D reconstruction results on Pix3D [4]. For each input image, we show reconstructions by ShapeHD [6], and ground
truth. Our reconstructions resemble the ground truth.

9


	. Implementation Details
	. Training Details
	. Network Structures
	. Linear Search and Linear-Binary Search Algorithms

	. Additional Experimental Results
	. Expressiveness
	. Over-Fitting Problem Study
	. Additional Qualitative Performances


