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1. Proof of Proposition 1
The problem is

minimize
s

Tr((s−m)ᵀ(s−m)) + ηTr(sᵀLs), (1)

where mi = (mi,x,mi,y) is an input motion and L is the
Laplacian matrix of the graph. We have L = UΛUᵀ where
Λ = diag([λi]) is a diagonal matrix of all eigenvalues λi
and columns of U are eigenvectors. We will prove that the
solution is given by s = Udiag([1/(1 + ηλi)])U

ᵀm.

Proof. To simplify the discussion, let us only consider fit-
ting the X-direction motion mx = [mi,x] first, which is,

minimize
sx

(sx −mx)
ᵀ(sx −mx) + ηsᵀxLsx. (2)

Replacing L = UΛUᵀ, we have,

minimize
sx

(sx −mx)
ᵀ(sx −mx) + η(Uᵀs)ᵀΛUᵀsx.

(3)
Then, replacing sx with sx = Ut where t ∈ RN , we have,

minimize
t

(Ut−mx)
ᵀ(Ut− xx) + ηtᵀΛt. (4)

Since U is orthogonal, we can further replace mx with
UUᵀmx to get,

minimize
t

(t−Uᵀmx)
ᵀ(t−Uᵀmx) + ηtᵀΛt. (5)

Merging two terms, we have,

minimize
t

tᵀ(I + ηΛ)t− 2(Uᵀmx)
ᵀt+ C, (6)

where C is a constant independent from t. Obvi-
ously, the solution of t in Problem 6 is given by (I +
ηΛ)−1Uᵀmx. Then, we replace it back to get sx =
U(I + ηΛ)−1Uᵀmx = Udiag([1/(1 + ηλi)])U

ᵀmx.
Similarly, the solution for the Y-direction motions sy =
Udiag([1/(1 + ηλi)])U

ᵀmy following the same proce-
dure. Combining both, we have s = Udiag([1/(1 +
ηλi)])U

ᵀm.

2. Connections to Motion Coherence Theory

In Motion Coherence Theory [11], the smoothness regu-
larization φ of a function f(x) : Rd → R is,

φ(f) =

∫
Rd

∞∑
l

β2l

l!2l
‖Dlf(x)‖2dx, (7)

where D is a derivative operator such that D2lf = ∇2lf ,
D2l+1 = ∇(∇2lf). ∇ is the gradient operator, and ∇2

is the laplacian operator. According to [1], the Equation 7
is equivalent to the regularization term used in [6, 4, 3] as
follows,

ψ(f) =

∫
Rd

‖f̃(s)‖2

G(s)
ds, (8)

where f̃ is the Fourier transformation of f and G is a Gaus-
sian function. Minimizing the term ψ(f) forces f to be
smooth by penalizing high-frequency components of f .

In the view of Graph Fourier Transformation [7], we
show that the proposed LMF has a similar form as ψ of
Equation 8, which also penalizes the high frequency com-
ponents of motions. The solution to LMF is given by
Udiag([1/(1 + ηλi)])U

ᵀm. First, Uᵀm is the Graph
Fourier Transformation of m, where different rows stand
for signals in different frequencies. Then, high frequency
components of Uᵀm is penalized by 1 + ηλi. Finally, it is
transformed back by left-multiplying U , which is a Inverse
Graph Fourier Transformation.

3. Network Details

Fig. 1 shows some details of each component. “IN” is
an instance normalization layer. “BN” is a batch normaliza-
tion layer. “FC” is a fully connected layer. “KNNDiff(8)”
computes the difference between a feature with its neigh-
boring features on the graph and “SmoothDiff” computes
f −R(η)f according to the Proposition 1.
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Figure 1. Detailed network architecture of LMCNet.

4. Training Details
We use Adam optimizer with 1e-3 as learning rate and

the learning rate is frozen for 200k steps. After 200k steps,
we halve the learning rate every 20k steps. The batch size
is 8 in all experiments.

5. Qualitative Results on SUN3D [10]
We show more qualitative results of LMCNet,

PointCN [5] and OANet [12] on the indoor SUN3D
dataset in Fig. 2.

6. Qualitative Results on DAVIS [8]
We evaluate the propose model on the DAVIS [8] dataset

which mainly consists of images containing a dynamic fore-
ground object with non-rigid deformation. Some qualitative
results are shown in Fig. 4. LMCNet is able to find coher-

ent correspondences with non-rigid motions among noisy
putative correspondences.

7. Compatibility with Learning-based Descrip-
tor and Matcher

We have conducted experiments on the SUN3D dataset
and the ScanNet dataset to show the compatibility of LM-
CNet with SuperPoint [2] descriptor and SuperGlue [9]
matcher. We use the official pretrained models provided
by SuperPoint and SuperGlue. Some qualitative results are
shown in Fig. 3. On every image, we extract 1024 Su-
perPoint features and match them by SuperGlue between
every image pair. However, we do not adopt the filtering
strategy of SuperGlue but retain all correspondences as in-
put to the LMCNet, which is shown by the Column 2 of
Fig. 3. The results show that LMCNet is able to find much
more dense coherent correspondences from all putative cor-
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Figure 2. Qualitative results on the SUN3D [10] dataset.

SuperGlue Inputs LMCNet

Figure 3. Results of LMCNet with putative correspondences produced by the SuperPoint [2] descriptor and SuperGlue [9] matcher.



Figure 4. Qualitative results on the DAVIS [8] dataset. Column 1 shows the input correspondences which contain both foreground and
background correspondences. Column 2 shows the pseudo ground-truth label for foreground correspondences. Green color represents true
correspondences which connect the same instances between two frames while red color represents false correspondences. Column 3 shows
the output foreground correspondences of LMCNet, where background correspondences are not drawn for clear visualization.

respondences than the default filtering strategy of Super-
Glue. Improved performances may be achieved with other
descriptors or matchers, which we leave in future works.

8. Motion Coherence

It is hard to exactly measure how much motion coher-
ence property is learnt by a network. We conduct an ex-
periment by manually adding random or systematic pertur-



Figure 5. Predicted mean inlier probability under perturbations.
Note all true correspondences are perturbed.

Inputs LMCNet

Figure 6. A typical example of piece-wise smooth motions caused
by changes of depths.

bations to true correspondences, where random perturba-
tions violate the motion coherence property while system-
atic ones do not. As shown in Fig. 5, the inlier probabilities
predicted by LMCNet remain unchanged when coherence
property keeps while they drop fast otherwise.

9. Piece-wise smooth motions
Since the graph is built on the “bilateral” correspondence

space [3], LMCNet has the ability to detect piece-wise
smooth coherent correspondences. Fig. 6 shows a typical
example of piece-wise motions caused by varying depths in
the SUN3D dataset.
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