Learning to Warp for Style Transfer: Supplementary Material
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Figure 1. Style transfer results, top to bottom the artists are: Bacon,
Picasso, Paula Modersohn-Becker, an anonymous child, and van
Gogh.
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This supplementary material comprises: user control,
including ways to overcome ostensible limitations (Sec-
tion 1); a description of our evaluation interface for similar-
ity experiments, and raw results (Section 2); accuracy and
robustness tests (Section 3); and the architecture of the warp
network (Section 4). To help remind readers of how our re-
sults compare with alternative NST algorithms we provide
results in addition to those in the paper, shown in Figures 1.

1. User Control

The reader will have noticed that, in each case, the
content image and geometric exemplar share semantic at-
tributes. In practice, this is not expected to be a significant
problem because (as discussed in Section 5 of the paper)
artistic practice often deform objects within semantic class
limits. In principle, though the input images can be arbi-
trary, so it is interesting to explore such cases.

Aside: Artistic practice, along with lack of space and the
desire to demonstrate the impact of our limiting assumption
displaced our discussion of semantically different content
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Figure 2. Geometric style transfer for different semantic contents.
From top to bottom: House-shaped owl, sports car-shaped tur-
tle, Aladdin lamp-shaped chicken, and failure case on Dali’s face-
shaped clock, but this can be resolved by using a middle reference
image, as shown in Figure 3.

and target to the supplementary material.

In general, there can be no set of objective criteria to as-
sess the acceptability of output, given the semantic variance
of input. Rather, acceptability is a value judgment that de-
pends on the intentions of the user. Even so, it is safe to say
that our method can produce satisfying results for pairs of
images where the main regions of interest contain semanti-
cally related or geometrically similar parts. So, as long as
one of the conditions is satisfied, the results make some kind
of intuitive sense. For example, as shown in Figure 2. Such
output may be acceptable if the user wishes for some artis-



Figure 3. Reference transfer for input pairs which share neither
semantic nor shape similarities. (a) Clock, (b) Sleep by Salvador
Dali, (c) Human portrait and the deformation field, (d) Geometric
style transfer using the field in (c).

tic reason to have a house-shaped owl or a sports car-shaped
turtle.

When the input pairs share neither semantic nor shape
similarities, the results not intuitive. Such an example is
shown in Figure 2, where a clock face has been mapped
onto a deformed head (which is a detail from Dali’s ’Sleep”.
Artistic resolution of this problem is made possible because
we separate geometric warp style from texture style: if
artists still wish to use the warping effect, they may use a
middle reference image. As shown in Figure 3, they may
map a photographic face onto Dali’s painting, and then ap-
ply the resulting warp field to the clock.

Other forms of user control are available. The results in
1 are fully automatic, being the direct output of the algo-
rithms. In practice, artists will want to exert some level of
control over the output. One way that can be done with our
warping system is to scale the magnitude of the vectors in
the warp field. As shown in Figure 4, using the controlling
factor 7, we can amplify (v > 1) or reduce (0 < v < 1) the
exaggeration effects.

b

Content/Style vy=1 vy=15
Figure 4. Caricature exaggeration control. The first column shows
the content/style image pair. The second to fourth columns show
the exaggerated and rendered results under different controlling
factors.

2. Evaluation interface and raw results

As described in Section 4.2 of the paper, we performed
a subjective similarity assessment by showing participants
images and let them pick two they judged to be the most
similar. We obtained 25 votes for each pair of methods. The
interface and raw results are shown in Figure 5 and Table 1,
respectively.

Style Transfer User Evaluation

Look at the 3 images below.
Check the two you think are most similar. Please choose 2 items
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Figure 5. User interface for subjective similarity survey.

H A ‘ B H A&Style ‘ B&Style ‘ A&B H
Ours1 NST [1] 18 2 5
Oursl AdalN [3] 22 1 2
Oursl DST [5] 15 7 3
Oursl Ours2 11 6 8
Ours2 NST [1] 7 5 13
Ours2 AdalN [3] 10 13 12
Ours2 DST [5] 6 10 9

DSTI[5] NST [1] 12 4 9

DST[5] | AdalN [3] 15 4 6

NST [I] | AdalN [3] 7 6 12
Table 1. Raw results of the similarity experiment. Ours1 and Ours2

are the full version and unwarped version of our approach, respec-
tively.

3. Accuracy and Robustness

A subjective assessment of the accuracy of our method
is its performance in virtual try out (see main paper). Of
course our results are unlikely to be as accurate as a method
designed specifically for the application, but our general
purpose algorithm is accurate enough to give a reasonable
first impression.

In order to more objectively test the accuracy of our
method to various geometric deformations and object do-
mains, we tested it on PF-PASCAL [2], an annotated
ground truth benchmark of intra-class objects. The cor-



Figure 6. Tests on annotated image pairs. From left to right:
Source, target and the warped result (with warped grids) using our
geometric deformation module. Intra-class (first two rows) tests
and cross-domain example (the third row).

rectness of correspondences is measured by the percent-
age of correct keypoint transfers (PCK). Ground-truth key-
points are deemed to be correctly predicted if they lie within
amax(h,w) pixels of the predicted points for « in [0, 1],
where h and w are the height and width of the object bound-
ing box, respectively. Our geometric deformation module
achieved the average 0.7 PCK (o = 0.1) over all object
classes.
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Figure 7. Robustness test on the art domain. Left: content image
1., Upper row: the original geometric exemplar I, and the artistic
texture augmented exemplar I;. Middle row: warped results of
DST [5] based on I, and I, Bottom row: deformed results of our
approach with the corresponding estimated warping fields.

Robustness here means robustness to different artistic
domains. This is an important question on which we are
not aware of any prior art, and that would take a new paper
to answer in full. Our intention here is to provide a reason-
able indicator of robustness. First we note that the “mask”

example in Figure 10 of the main paper demands robust-
ness because we can freely “switch” the role of content and
geometric exemplar. Here, Figure 7 illustrates the robust-
ness of our warp field module using geometric exemplars of
constant content but varying in their depiction domain. It
can be seen there is little difference between the estimated
warping fields and the deformed results are all satisfying.
We have also provided output from Kim et al. [5] for quali-
tative comparison.

4. Network architecture

Our warp field estimation network roughly follows the
architecture guidelines set forth by Ronneberger et al. [4],
as shown in Figure 8. This architecture can be broadly
thought of as an encoder network (first half of the archi-
tecture) followed by a decoder network (second half of the
architecture). For the convenience of calculations, we store
the four-dimensional matching matrix M in a three dimen-
sional way. The encoder first downsamples and encodes
M into representations at multiple different levels. The de-
coder then projects the discriminative features learned by
the encoder onto the pixel space to get a warping field. The
decoder consists of upsampling and concatenation. Since
upsampling is a sparse operation, in order to better learn
representations with the following convolutions, we use fea-
ture maps from early stages as good priors and concatenate
them with the upsampled features.
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Figure 8. Warp field estimation net architecture. The number of channels is denoted on top of the box. The arrows denote the different
operations. The dashed lines/arrow show how information from the encoding layers feeds into the decoding layers to condition their output.



	. User Control
	. Evaluation interface and raw results
	. Accuracy and Robustness
	. Network architecture

