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In this supplementary material, we present more experi-
mental details.

Video Feature Extraction. The interval for feature extrac-
tion is 8. Layers after the global pooling layer of I3D [7]
are discarded during feature extraction. The I3D network
is pre-trained on Kinetics-400 [1]. Since many categories
on MUSES are unique to MUSES, we finetune the I3D net-
work on MUSES. Besides, optical flow is not used for fea-
ture extraction due to excessive computation cost. On THU-
MOS14, we adopt the two-stream strategy [9] and extract
features from both RGB and optical flow frames with two-
stream I3D models pre-trained on Kinetics-400. It’s worth
noting that the categories on THUMOS 14 highly correlate
with those on Kinetics-400. On ActivityNet-1.3, we em-
ploy the two-stream networks trained on ActivityNet-1.3 by
Xiong et al. [10] for features extraction.

Proposal Generation. On THUMOS 14, we use proposals
generated by [0] for its excellent performance. On MUSES,
we find it predicts too many false boundaries and achieves
low recall rates, probability due to the difficulty in detect-
ing event boundaries in multi-shot scenarios. Therefore, a
different proposal generation method is employed. Follow-
ing [8], we generate sliding windows proposals of multiple
lengths and employ a binary classifier to rank the proposals.
The window is slid with a stride of 25% of its length and the
lengths are 10, 25, 40, 55, 70, 85, 100, 130, 160, and 190
seconds. The binary classifier is composed of a convolu-
tional stage and a fully connected stage. The convolutional
stage stacks 4 1D convolutional layers with 128, 256, 512,
and 1024 filters of kernel size 3 respectively, each followed
by a ReLU layer and a max-pooling layer with kernel size 2.
The fully connected stage includes 2 fully connected layers
of 512 and 3 units respectively. After proposal ranking and
non-maximal suppression (NMS) with a threshold 0.8, the
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top 100 scored proposals are kept for the event localization
model.

Network Architecture. By default, we use two multi-
scale blocks for Temporal Aggregation. In each multi-scale
block, there are K = 4 branches. The kernel sizes of these
branches are {1 x 3,3 x 3,3 x 3,3 x 3} and the correspond-
ing unit sizes (W) are {3, 3,6, 9} respectively. The output
channels of the first and the second block are 384 and 512
respectively.

For proposal feature extraction, we follow [3, 2, 11] to
extend the boundaries of each proposal by 50% of its length
on both the left and right sides before Rol Pooling [4],
which is helpful for exploiting contextual information.

Loss Function. For proposal classification, completeness
classification and boundary regression, the cross-entropy
loss, the hinge loss and the Smooth L1 loss are used re-
spectively. The total loss is the weighted sum of the three
losses, with weights of 1, 0.5, and 0.5 respectively.

Training and Inference. During training, we set the ini-
tial learning rate to 0.01, mini-batch size to 32 and train the
models with SGD optimizer with momentum 0.9. The mod-
els are trained for 20 epochs on THUMOS 14 and 30 epochs
on MUSES. After training for 15 epochs, the learning rate
is divided by 10. For post-processing, we apply NMS with
a threshold 0.4 to remove redundant detections. On THU-
MOS14, the predictions of the RGB and flow streams are
fused using a ratio of 2 : 3 during inference. On Activi-
tyNet, the training and inference details are the same as [5].
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