
Neighborhood Normalization for Robust Geometric Feature Learning –
Supplementary Material

Xingtong Liu *1, Benjamin D. Killeen ∗1, Ayushi Sinha1, Masaru Ishii2, Gregory D. Hager1, Russell H.
Taylor1, and Mathias Unberath1

1Johns Hopkins University
2Johns Hopkins Medical Institutions
{xingtongliu, unberath}@jhu.edu

1. Transposed NHN-Conv and B-NHN-Conv
Since it is not straightforward to describe transposed

sparse 3D convolution in mathematical terms, we described
it in words here instead. For equations in Sec. 3.1 of
the main content,

∑
v∈N (u) indicates a generalized sparse

convolution operation in actual implementation. We used
the MinkowskiConvolutionFunction in the python package
Minkowski Engine [1] for this purpose. To implement a
transposed version of the NHN-Conv and B-NHN-Conv, we
simply replaced all MinkowskiConvolutionFunction with
MinkowskiConvolutionTransposeFunction.

2. Architectures of comparison methods
2.1. MinkowskiNet with standalone normalization

The architecture is shown in Fig. 1. In the main
content, we evaluated this architecture with normalization
BatchNorm [4], InstanceNorm [11], and Batch-Instance
Norm [7]. These are abbreviated as Mink.+BN, Mink.+IN,
and Mink.+BIN in the main content. Mink.+BN, Mink.+IN,
and Mink.+BIN all have around 8.80 million learnable pa-
rameters. In addition, Mink.+NHN and Mink.+B-NHN also
have around 8.80 million learnable parameters.

2.2. FCGF

The architecture is shown in Fig. 2. Please find the math-
ematical definition of the 3DConv layer in the main con-
tent. Tr-3DConv is simply a transposed version of 3DConv.
All numbers mean the same as the ones in the Network Ar-
chitecture section of the main content. For 3DConv and
Tr-3DConv, the three numbers mean kernel size along one
spatial dimension, stride size, and output channel size. The
number in BatchNorm and ResBlock represents the output

*These authors contributed equally to this work

Figure 1. Network architecture for MinkowskiNet (Mink.) with
standalone normalization. Norm can be any choice of stan-
dalone normalization. The number after Norm is the output chan-
nel size of this module. For the transposed version of this architec-
ture that was used in the standard 3DMatch benchmark, we sim-
ply replaced the combination of the 3DConv and Unpooling with
a transposed 3DConv with stride size 2. Note all skipping connec-
tions in this supplementary material is concatenation-style.

Figure 2. Network architecture for FCGF [2]. Note that the
architecture used in the actual state-of-the-art model in [2] is dif-
ferent from the one they have in the paper.

channel size. The total number of learnable parameters is
8.76 million.

2.3. KPConv

The architecture is shown in Fig. 3. We changed the
hyperparameter setting in the original work [10] for the

1



Figure 3. Network architecture for KPConv [2]. Note we mod-
ified the original architecture for the task of 3D descriptor learn-
ing. The number besides the module name is the size of the out-
put channel. Please refer to github repo https://github.
com/HuguesTHOMAS/KPConv-PyTorch for the implemen-
tation details of all the modules in the figure. In the figure, Simple-
Block stands for the SimpleBlock module; ResnetBlock stands for
the ResnetBottleneckBlock module; ResnetBlock-S stands for the
ResnetBottleneckBlock module with striding enabled; Upsampling
stands for the NearestUpsampleBlock module; UnaryBlock stands
for the UnaryBlock module.

3DMatch dataset and the task of 3D descriptor learning.
First, all the parameters are kept the same. The number
of kernel points per filter is 15. The first subsampling grid
size is set to 5 cm for a fair comparison with other methods
in the 3DMatch benchmark. The first radius, i.e. number
of grid cells, of convolution is 2.5. The radius of the area
under influence for each kernel point is 1.2 grid cell. The
type of KPConv influence is linear. The aggregation mode
is summing in the standard benchmark and averaging in the
resolution-mismatch one. The centered 3D spatial locations
of all points are used for neighbor searching and downsam-
pling inside the architecture. For what is changed, the chan-
nel size of the input feature is 1. The input features are all
constant one. The channel dimension of the filter base is
90. The training setting, such as batch size, optimizer, and
loss function, etc, is the same as the Mink. architecture de-
scribed in the main content. The total number of learnable
parameters is 9.08 million.

2.4. PPNet

The architecture is shown in Fig. 4. Some hyperparame-
ter settings and the architecture is changed, compared with
the original work [5]. The number of input feature is 3,
which are all constant number one. The input grid size is
set to 5 cm for a fair comparison. After each downsam-
pling layer, the grid size is multiplied by 2. The channel
dimension of the filter base is 60. The maximum number
of neighbors is set to 27. The position embedding type is
”XYZ” and the reduction type for local aggregation is aver-
aging. The upsampling modules are the nearest upsampling.
The total number of learnable parameters is 9.07 million.

Figure 4. Network architecture for PPNet [5]. Note we mod-
ified the original architecture for the task of 3D descriptor learn-
ing. The number besides the module name is the size of the out-
put channel. We use the provided PPNet modules in the PyTorch
Points 3D python package. In the figure, SimpleBlock stands for
the SimpleBlock module; ResnetBBlock stands for the ResnetB-
Block module; ResnetBBlock-S stands for the ResnetBBlock mod-
ule with striding enabled. The combination of Upsamling and
MLP modules stands for the FPModule PD module. The Linear
module at the end is a simple linear transform.

2.5. PointNet++

The architecture is shown in Fig. 5. The input vertex
features are a concatenation of centered point XYZ loca-
tion and constant one. In MSGD, as opposed to the origi-
nal design where the point cloud is downsampled to a fixed
number, we use a fixed ratio of the points instead to account
for the varying sample size. The downsample ratios for the
four MSGD modules are 1.0, 0.25, 0.25, and 0.25. For
all MSGD and GDBM modules, an additional 3 channels
of point locations are concatenated with the feature map.
The maximum number of neighbors is set to 27. The initial
neighborhood radius is 12.5 cm. The radius is multiplied by
2 or divided by 2 whenever the point cloud is downsampled
or upsampled, respectively. The total number of learnable
parameters is 8.93 million.

2.6. DCM-Net

Because the form of input data in the experiments is a
point cloud, the architecture in the original work [9] that
uses only K-nearest neighbors for message propagation is
used. The input vertex features point locations. The filters
of the encoder part are [16, 96, 256, 384] with the number
of propagation steps per graph layer as 4. The filters of the
decoder part are the same as the encoder part, which is the
original design in [9]. The pooling and aggregation modes
are set to ”max” and ”mean”, respectively. The channel size
of the output feature description is 32, the same as all other
comparison methods. The total number of learnable param-
eters is 7.29 million.

https://github.com/HuguesTHOMAS/KPConv-PyTorch
https://github.com/HuguesTHOMAS/KPConv-PyTorch


Figure 5. Network architecture for PointNet++ [8] Note we
modified the original architecture for the task of 3D descriptor
learning. We use the provided PointNet2 modules in the PyTorch
Points 3D python package. In the figure, MSGD stands for the
PointNetMSGDown module; GDBM stands for the GlobalDense-
BaseModule module; DFPM stands for the DenseFPModule mod-
ule. The Linear module at the end is a simple linear transform.
MSGD consists of point downsampling and three Linear layers,
and the three numbers after the module name are the output chan-
nel sizes of these Linear layers. The two numbers after GDBM
and DFPM are the output channel sizes of the two Linear layers
within the module. The number after Linear is the output channel
size of the module. N , as the filter base, is set to 112.

3. Visualization of feature embeddings of
resolution-mismatch sample pairs

The output feature embeddings from Mink.+B-NHN are
visualized in Fig. 6, Fig. 7, and Fig. 8 for the 3DMatch [12],
KITTI odometry [3], and the clinical datasets, respec-
tively. The models of Mink.+B-NHN are trained with the
resolution-mismatch settings described in the experiment
section of the main content. UMAP [6] is used to reduce
32-dimension output feature descriptions to scalar values.
These are then displayed with the JET colormap. To bet-
ter visualize the embeddings of the 3DMatch and clinical
datasets, we display the meshes instead of the input point
clouds. The vertices of a displayed mesh get the embed-
dings of the spatially closest point in the corresponding in-
put point cloud. All sample pairs displayed in these fig-
ures have a resolution mismatch. The mesh edges of the
samples from 3DMatch and clinical datasets are displayed
to make the resolution mismatch easier to observe. If the
displayed colors of feature embeddings are similar, the L2
distances between the original feature embeddings are prob-
ably small.

References
[1] C. Choy, J. Gwak, and S. Savarese. 4d spatio-temporal con-

vnets: Minkowski convolutional neural networks. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 3075–3084, 2019. 1

[2] C. Choy, J. Park, and V. Koltun. Fully convolutional geo-
metric features. In Proceedings of the IEEE International
Conference on Computer Vision, pages 8958–8966, 2019. 1,
2

[3] A. Geiger, P. Lenz, and R. Urtasun. Are we ready for au-
tonomous driving? the kitti vision benchmark suite. In 2012
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 3354–3361. IEEE, 2012. 3, 5

[4] S. Ioffe and C. Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift.
CoRR, abs/1502.03167, 2015. 1

[5] Z. Liu, H. Hu, Y. Cao, Z. Zhang, and X. Tong. A closer look
at local aggregation operators in point cloud analysis. ECCV,
2020. 2

[6] L. McInnes, J. Healy, N. Saul, and L. Großberger. Umap:
Uniform manifold approximation and projection. Journal of
Open Source Software, 3(29):861, 2018. 3

[7] H. Nam and H.-E. Kim. Batch-instance normalization for
adaptively style-invariant neural networks. In S. Bengio,
H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,
and R. Garnett, editors, Advances in Neural Information Pro-
cessing Systems, volume 31, pages 2558–2567. Curran As-
sociates, Inc., 2018. 1

[8] C. R. Qi, L. Yi, H. Su, and L. J. Guibas. Pointnet++: Deep
hierarchical feature learning on point sets in a metric space.
In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fer-
gus, S. Vishwanathan, and R. Garnett, editors, Advances in
Neural Information Processing Systems, volume 30, pages
5099–5108. Curran Associates, Inc., 2017. 3

[9] J. Schult, F. Engelmann, T. Kontogianni, and B. Leibe.
Dualconvmesh-net: Joint geodesic and euclidean convolu-
tions on 3d meshes. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
June 2020. 2

[10] H. Thomas, C. R. Qi, J.-E. Deschaud, B. Marcotegui,
F. Goulette, and L. J. Guibas. Kpconv: Flexible and de-
formable convolution for point clouds. In Proceedings of
the IEEE/CVF International Conference on Computer Vision
(ICCV), October 2019. 1

[11] D. Ulyanov, A. Vedaldi, and V. S. Lempitsky. Instance
normalization: The missing ingredient for fast stylization.
CoRR, abs/1607.08022, 2016. 1

[12] A. Zeng, S. Song, M. Nießner, M. Fisher, J. Xiao, and
T. Funkhouser. 3dmatch: Learning local geometric descrip-
tors from rgb-d reconstructions. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 1802–1811, 2017. 3, 4



Figure 6. Visualization of output feature embeddings for the 3DMatch dataset [12]. Matching colors indicate closely aligned feature
representations; i.e. it is desirable for the same objects to have similar colors in each sample pair. The 1st and 2nd columns form sample
pairs. The procedures taken for visualization are described in Sec. 3.



Figure 7. Visualization of output feature embeddings for the KITTI dataset [3]. Matching colors indicate closely aligned feature
representations. The 1st and 2nd columns form sample pairs, the same with the 3rd and 4th columns. The procedures taken for visualization
are described in Sec. 3.



Figure 8. Visualization of output feature embeddings for the clinical dataset of nasal cavities. Matching colors indicate closely
aligned feature representations. The 1st and 2nd columns form sample pairs, the same with the 3rd and 4th columns. The 1st and 3rd
columns display the entire nasal cavity, while the 2nd and 4th columns display the nasal passage. The procedures taken for visualization
are described in Sec. 3.


