A. Proof of Theorem 1

Given a point cloud 7" and its perturbed version 7™, we
define the following two random variables:

W = S,(T), Z = Sip(T*), (13)

where W and Z represent the random 3D point clouds with
k points subsampled from 7" and 7 uniformly at random
without replacement, respectively. We use ® to denote the
joint space of W and Z, where each element is a 3D point
cloud with k points subsampled from 7" or 7. We denote
by E the set of intersection points between 1" and T, i.e.,
E=TnNT".

Before proving our theorem, we first describe a variant
of the Neyman-Pearson Lemma [2 1] that will be used in our
proof. The variant is from [9].

Lemma 1 (Neyman-Pearson Lemma). Suppose W and Z
are two random variables in the space ® with probability
distributions o, and o, respectively. Let H : ® — {0,1}
be a random or deterministic function. Then, we have the
following:

o fQi={pc®:ou(p)>Co(p)}and Q2 ={p e
D :oy(p) = C-0.(p)} for some ¢ > 0. Let Q =
Q1 U Qs, where Q3 C Q2. If we have Pr(H(W) =
1) > Pr(W € Q), then Pr(H(Z) = 1) > Pr(Z € Q).

o IfQ1={pe®:0u(p) <Coxp)andQz ={p €
D oy(p) = C-0.(p)} for some { > 0. Let Q =
Q1 U Qs, where Q3 C Qa. If we have Pr(H(W) =
1) < Pr(W € Q), then Pr(H(Z) = 1) < Pr(Z € Q).

Proof. Please refer to [9]. O]

Next, we formally prove our Theorem 1. Our proof
is inspired by previous work [10, 9]. Roughly speaking,
the idea is to derive the label probability lower and upper
bounds via computing the probability of random variables
in certain regions crafted by the variant of Neyman-Pearson
Lemma. However, due to the difference in sampling meth-
ods, our space divisions are significantly different from pre-
vious work [9]. Recall that we denote p; = Pr(f(W) = 1)
and p; = Pr(f(Z) = i), where i € {1,2,--- ,c}. We
denote y = argmax;_gq o . p;- Our goal is to find the
maximum r* such that y = argmax;_g 5. p;, Le.,
py > i = mawizyp;, for VI* € T(T,r*). Our key
step is to derive a lower bound of p; and an upper bound
of p; = max;»,p; via Lemma 1. Given these probability
bounds, we can find the maximum 7* such that the lower
bound of py, is larger than the upper bound of p;.

Dividing the space ®: We first divide the space ® into

three regions which are as follows:

Ar ={pe®@lpCT,p L E}, (14)
Ap- ={p €@ CT", p £ E}, (15)
Ap ={p € ®lp C E}, (16)

where A consists of the subsampled point clouds that can
be obtained by subsampling % points from £; and Ap (or
Arp+) consists of the subsampled point clouds that are sub-
sampled from 7" (or T) but do not belong to Ag. Since W
and Z, respectively, represent the random 3D point clouds
with k points subsampled from 7" and 7™ uniformly at ran-
dom without replacement, we have the following probabil-
ity mass functions:

A ifpe ArUAE,
Pr(W = ¢) = { (i) TeTE 17
0, otherwise,
A, ifo € Ap- UAE,
Pr(Z =)= () "PEETEEE (18)
0, otherwise,

where t is the number of points in T* (i.e., t = |T*|). We
use s to denote the number of intersection points between
T and T%, i.e., s = |E| = |T N T*|. Then, the size of Ag
is (z), ie., |Ag| = (;) Given the size of Af, we have the
following probabilities:
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Pr(W € Ap) = 422, (19)
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Pr(W S AT) =1— e (20)

(%)
Pr(W € Ap«) =0. 1)

9]

Pz e ar) =1 0, (23)

()
Pr(Z € Ar) =0. (24)
We have Pr(W € Ap) = Eﬁ; because Pr(W € Ap) =
% = E%g Since Pr(W € A7) +Pr(W € Ag) =1,

we have Pr(W € Ar) = 1 — Eﬁ; We have Pr(W €
k

Arp«) = 0 because W is subsampled from 7', which does
not contain any points from 7\ E. Similarly, we can com-
pute the probabilities of random variable Z in those regions.
Based on the fact that p,, and p; (i # y) should be integer
multiples of 1/(}}), we derive the following bounds:

(&)
p’éMEPr(f(W)zi),W#y. (26)
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Deriving a lower bound of p; : We define a binary func-
tion Hy,(p) = I(f(¢) = y), where ¢ € ® and I is an in-
dicator function. Then, we have the following based on the
definitions of the random variable Z and the function H,:

p, =Pr(f(Z) =y) =Pr(H,(Z) = 1). (27)

Our idea is to find a region such that we can apply

Lemma 1 to derive a lower bound of Pr(H,(Z) = 1). We

()

assume pj, ( B

because we only need to find a sufficient condition. Then,
we can find a region A, C A satistying the following:

> 0. We can make this assumption

Pr(W € A,) (28)
=p,, —Pr(W € Ap) (29)

=p, — (1 - %) . (30)

We can find the region A, because p; is an integer multi-
ple of ﬁ Given the region A,, we define the following
k

region:
A=ArUA,. (31
Then, based on Equation (25), we have:
P(f(W)=y) = p, =P (W e A).  (32)

We can establish the following based on the definition of
W:

Pr(H, (W) = 1) = Pr(f(W) = y) > P(W € A). (33)

Furthermore, we have Pr(W = ¢) > ¢ - Pr(Z = ¢) if and
onlyif o € ApandPr(W = ) = e-Pr(Z = ) if p € A,
(i)

where € = 22¢. Therefore, based on the definition of A in

k
Equation (31) and the condition in Equation (33), we obtain
the following by applying Lemma 1:

Pr(H,(Z) =1) > Pr(Z € A). (34)

Since we have p;; = Pr(H,(Z) = 1), Pr(Z € A) is a lower
bound of p; and can be computed as follows:

Pr(Z € A) (35)
—Pr(Z € Ar) +Pr(Z € A,) (36)
=Pr(Z € A,) (37)
=Pr(W € A,)/e (38)

:l.<¢,_<1_gg>). (39)

We have Equation (37) from (36) because Pr(Z € Ar) = 0,
Equation (38) from (37) as Pr(W = ¢) = ¢-Pr(Z = ¢) for
© € Ay, and the last Equation from Equation (28) - (30).

Deriving an upper bound of max;., pj: We lever-
age the second part of Lemma 1 to derive an upper bound
of max;., p;. We assume Pr(W € Ag) > P}, Vi €
{1,2,---,¢} \ {y}. We can make the assumption be-
cause we aim to derive a sufficient condition. For Vi €
{1,2,---,¢} \ {y}, we can find a region A; C Ag such
that we have the following:

Pr(W € A;) =7, (40)

We can find the region because p; is an integer multiple of
.. Given region A;, we define the following region:

()

Bi=A; UAp-. (41)

ForVi € {1,2,--- ,c}\ {y}, we define a function H;(yp) =
I(f(p) = i), where ¢ € ®. Then, based on Equation (26)
and the definition of random variable W, we have:

Pr(H;(W) =1) =Pr(f(W) =1) <p, =Pr(W € B)).
(42)

We note that Pr(W = ¢) < ¢ - Pr(Z = ¢) if and only if
¢ € A and Pr(W = ) = € -Pr(Z = ) if p € A,
t
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where ¢ = . Based on the definition of random variable

R

Z, Equation (42), and Lemma 1, we have the following:
Pr(H;(Z) =1) < Pr(Z € B;). 43)

Since we have p; = Pr(f(Z) = i) = Pr(H;(Z) = 1),

Pr(Z € B;) is an upper bound of p} and can be computed
as follows:

Pr(Z € B)) (44)
:Pr(Z S Az) + PI'(Z S AT*) 45)
=Pr(Z € A;) +1— @ (46)
()
=Pr(W € A;)/e+1— (ti) 47)
()
1 (i)
¢ ()

By considering all possible 7 in the set {1,2,--- ,¢} \ {y},
we have:
max p; 49
naxp; (49)
<maxPr(Z € B;) (50)
iy
1 S
== axﬁ;+1—(%) (51)
¢ Py (&)
1 S
<7-79’€+1—@ (52)

e (1)



where p, > max D}
i#y

Deriving the certified perturbation size: To reach our
goal Pr(f(Z) = y) > m;LXPr(f(Z) = 1), it is sufficient to
iy

have the following:
. (Z))) . (x)
|y, —(1-75 >—-p,+1-— 25
€ (“’ ( (x) ¢ (1)
7y T1—p, +Pe <0.
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Since Equation (54) should be satisfied for all possible per-
turbed point cloud 7" (i.e., n —r < t < n 4+ r), we have
the following sufficient condition:

t s

W 5 ()

norsesntr () (3)

When the above Equation (55) is satisfied, we have p; —
(1 - (:)> > 0and P(W € Ap) — W)

(¥) ()
{1,2,---,¢} \ {y}, which are the conditions that we rely
on to construct the region A, and A;(i # y). The certi-
fied perturbation size r* is the maximum r that satisfies the
above sufficient condition. Note that s = max(n,t) — 7.

Then, our certified perturbation size r* can be derived by
solving the following optimization problem:

(53)

(54)

—-2. +1—p7’y+ﬁ;<0. (55)

s

> pi,Vi €

r* = argmaxr
T

t max(n,t)—r
(o)

k) 9 N KT _ o L7
s.t. n_rrgtagnw (Z) (Z) +1 &—i—pe <0.
(56)
B. Proof of Theorem 2

Similar to previous work [4, 10, 9], we show the tight-
ness of our bounds via constructing a counterexample. In
particular, when r > r*, we will show that we can construct
a point cloud 7™ and a point cloud classifier f* which sat-
isfies the Equation (4) such that the label y is not predicted
by our PointGuard or there exist ties. Since r* is the max-
imum value that satisfies the Equation (56), there exists a
point cloud T* satisfying the following when r > 7*:

A )
SN )

max(n,t)—7r max(n,t)—r

y (%) (&)

+1—p, +D.>0 (57)

(58)
— max(n,t)—r max(n,t)—r
(:,&JFl_wzl. (p;— (1—(i)>>
€ v € (%)

(59)

(&)

where t is the number of points in 7* and ¢ = »%. Let
k
A, C Ag be the region that satisfies the following:
A.NA,=0and Pr(W € A,) =p.. (60)

Note that we can find the region A, because we have p; +
P, < 1. Welet B, = Ap« U A,. Then, we can divide the
the region ® \ (A N B,) into ¢ — 2 regions and we use B;
to denote each region, where ¢ € {1,2,--- , ¢} \ {y,e}. In
particular, each region B; satisfies Pr(T € B;) < p}. We
can find these regions since pil + iz, Pi > 1. Then, we
can construct the following point cloud classifier f*:

if
Fe) = {y’l peA 1)

i, if o € B;.

Note that the point cloud classifier f* is well-defined in the
space ®. We have the following probabilities for our con-
structed point cloud classifier f*:

Pr(f*(W)=y) =Pr(W € A) :pi;ﬁ (62)
P/ (W) =) =PUW €B,) =7, (63
Pr(f*(W)=1) =Pr(W € B;) <7, (64)

where i € {1,2,...,¢c} \ {y,e}. Note that the point cloud
classifier f* is consistent with Equation (4). Moreover, we
have the following:

Pr(f*(Z) = e) (65)
_PrZ<B,) (66)
Tg/e (max(z,t)—r)
ST [ S 67)
¢ (i)
1 ) (max(r]z,t)fr)
ZZ (py— (1_(2) (63)
=Pr(Ze A) (69)
=Pr(f*(Z) =y), (70)
(i)

where ¢ =

~+. Note that we derive Equation (68) from

k
(67) based on Equation (59). Therefore, for Vr > r*, there
exist a point cloud classifier f* which satisfies Equation (4)
and a point cloud T* such that g(T™) # y or there exist ties.
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Figure 5: Comparing different methods under different attacks on ScanNet.
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Figure 6: (a) Training the point cloud classifier with vs. without subsampling. (b), (c), and (d) show the impact of £,
a, and N, respectively. The dataset is ScanNet.



