
A. Proof of Theorem 1

Given a point cloud T and its perturbed version T ∗, we
define the following two random variables:

W = Sk(T ), Z = Sk(T ∗), (13)

where W and Z represent the random 3D point clouds with
k points subsampled from T and T ∗ uniformly at random
without replacement, respectively. We use Φ to denote the
joint space of W and Z, where each element is a 3D point
cloud with k points subsampled from T or T ∗. We denote
by E the set of intersection points between T and T ∗, i.e.,
E = T ∩ T ∗.

Before proving our theorem, we first describe a variant
of the Neyman-Pearson Lemma [21] that will be used in our
proof. The variant is from [9].

Lemma 1 (Neyman-Pearson Lemma). Suppose W and Z
are two random variables in the space Φ with probability
distributions σw and σz , respectively. Let H : Φ −→ {0, 1}
be a random or deterministic function. Then, we have the
following:

• IfQ1 = {ϕ ∈ Φ : σw(ϕ) > ζ ·σz(ϕ)} andQ2 = {ϕ ∈
Φ : σw(ϕ) = ζ · σz(ϕ)} for some ζ > 0. Let Q =
Q1 ∪ Q3, where Q3 ⊆ Q2. If we have Pr(H(W) =
1) ≥ Pr(W ∈ Q), then Pr(H(Z) = 1) ≥ Pr(Z ∈ Q).

• IfQ1 = {ϕ ∈ Φ : σw(ϕ) < ζ ·σz(ϕ)} andQ2 = {ϕ ∈
Φ : σw(ϕ) = ζ · σz(ϕ)} for some ζ > 0. Let Q =
Q1 ∪ Q3, where Q3 ⊆ Q2. If we have Pr(H(W) =
1) ≤ Pr(W ∈ Q), then Pr(H(Z) = 1) ≤ Pr(Z ∈ Q).

Proof. Please refer to [9].

Next, we formally prove our Theorem 1. Our proof
is inspired by previous work [10, 9]. Roughly speaking,
the idea is to derive the label probability lower and upper
bounds via computing the probability of random variables
in certain regions crafted by the variant of Neyman-Pearson
Lemma. However, due to the difference in sampling meth-
ods, our space divisions are significantly different from pre-
vious work [9]. Recall that we denote pi = Pr(f(W) = i)
and p∗i = Pr(f(Z) = i), where i ∈ {1, 2, · · · , c}. We
denote y = argmaxi={1,2,...,c} pi. Our goal is to find the
maximum r∗ such that y = argmaxi={1,2,··· ,c} p

∗
i , i.e.,

p∗y > p∗e = maxi 6=yp
∗
i , for ∀T ∗ ∈ Γ(T, r∗). Our key

step is to derive a lower bound of p∗y and an upper bound
of p∗e = maxi 6=yp

∗
i via Lemma 1. Given these probability

bounds, we can find the maximum r∗ such that the lower
bound of p∗y is larger than the upper bound of p∗e .

Dividing the space Φ: We first divide the space Φ into

three regions which are as follows:

∆T = {ϕ ∈ Φ|ϕ ⊆ T, ϕ 6⊆ E}, (14)
∆T∗ = {ϕ ∈ Φ|ϕ ⊆ T ∗, ϕ 6⊆ E}, (15)
∆E = {ϕ ∈ Φ|ϕ ⊆ E}, (16)

where ∆E consists of the subsampled point clouds that can
be obtained by subsampling k points from E; and ∆T (or
∆T∗ ) consists of the subsampled point clouds that are sub-
sampled from T (or T ∗) but do not belong to ∆E . Since W
and Z, respectively, represent the random 3D point clouds
with k points subsampled from T and T ∗ uniformly at ran-
dom without replacement, we have the following probabil-
ity mass functions:

Pr(W = ϕ) =

{
1

(n
k)
, if ϕ ∈ ∆T ∪∆E ,

0, otherwise,
(17)

Pr(Z = ϕ) =

{
1

(t
k)
, if ϕ ∈ ∆T∗ ∪∆E ,

0, otherwise,
(18)

where t is the number of points in T ∗ (i.e., t = |T ∗|). We
use s to denote the number of intersection points between
T and T ∗, i.e., s = |E| = |T ∩ T ∗|. Then, the size of ∆E

is
(
s
k

)
, i.e., |∆E | =

(
s
k

)
. Given the size of ∆E , we have the

following probabilities:

Pr(W ∈ ∆E) =

(
s
k

)(
n
k

) , (19)

Pr(W ∈ ∆T ) = 1−
(
s
k

)(
n
k

) , (20)

Pr(W ∈ ∆T∗) = 0. (21)

Pr(Z ∈ ∆E) =

(
s
k

)(
t
k

) , (22)

Pr(Z ∈ ∆T∗) = 1−
(
s
k

)(
t
k

) , (23)

Pr(Z ∈ ∆T ) = 0. (24)

We have Pr(W ∈ ∆E) =
(s
k)

(n
k)

because Pr(W ∈ ∆E) =

|∆E |
|∆T∪∆E | =

(s
k)

(n
k)

. Since Pr(W ∈ ∆T )+Pr(W ∈ ∆E) = 1,

we have Pr(W ∈ ∆T ) = 1 − (s
k)

(n
k)

. We have Pr(W ∈
∆T∗) = 0 because W is subsampled from T , which does
not contain any points from T ∗ \E. Similarly, we can com-
pute the probabilities of random variable Z in those regions.

Based on the fact that py and pi(i 6= y) should be integer
multiples of 1/

(
n
k

)
, we derive the following bounds:

p′y ,
dpy ·

(
n
k

)
e(

n
k

) ≤ Pr(f(W) = y), (25)

p′i ,
bpi ·

(
n
k

)
c(

n
k

) ≥ Pr(f(W) = i),∀i 6= y. (26)



Deriving a lower bound of p∗y: We define a binary func-
tion Hy(ϕ) = I(f(ϕ) = y), where ϕ ∈ Φ and I is an in-
dicator function. Then, we have the following based on the
definitions of the random variable Z and the function Hy:

p∗y = Pr(f(Z) = y) = Pr(Hy(Z) = 1). (27)

Our idea is to find a region such that we can apply
Lemma 1 to derive a lower bound of Pr(Hy(Z) = 1). We

assume p′y−
(

1− (s
k)

(n
k)

)
≥ 0. We can make this assumption

because we only need to find a sufficient condition. Then,
we can find a region ∆y ⊆ ∆E satisfying the following:

Pr(W ∈ ∆y) (28)
=p′y − Pr(W ∈ ∆T ) (29)

=p′y −

(
1−

(
s
k

)(
n
k

)) . (30)

We can find the region ∆y because p′y is an integer multi-

ple of 1

(n
k)

. Given the region ∆y , we define the following

region:

A = ∆T ∪∆y. (31)

Then, based on Equation (25), we have:

Pr(f(W) = y) ≥ p′y = Pr(W ∈ A). (32)

We can establish the following based on the definition of
W:

Pr(Hy(W) = 1) = Pr(f(W) = y) ≥ Pr(W ∈ A). (33)

Furthermore, we have Pr(W = ϕ) > ε · Pr(Z = ϕ) if and
only if ϕ ∈ ∆T and Pr(W = ϕ) = ε·Pr(Z = ϕ) if ϕ ∈ ∆y ,

where ε =
(t
k)

(n
k)

. Therefore, based on the definition of A in

Equation (31) and the condition in Equation (33), we obtain
the following by applying Lemma 1:

Pr(Hy(Z) = 1) ≥ Pr(Z ∈ A). (34)

Since we have p∗y = Pr(Hy(Z) = 1), Pr(Z ∈ A) is a lower
bound of p∗y and can be computed as follows:

Pr(Z ∈ A) (35)
=Pr(Z ∈ ∆T ) + Pr(Z ∈ ∆y) (36)
=Pr(Z ∈ ∆y) (37)
=Pr(W ∈ ∆y)/ε (38)

=
1

ε
·

(
p′y −

(
1−

(
s
k

)(
n
k

))) . (39)

We have Equation (37) from (36) because Pr(Z ∈ ∆T ) = 0,
Equation (38) from (37) as Pr(W = ϕ) = ε ·Pr(Z = ϕ) for
ϕ ∈ ∆y , and the last Equation from Equation (28) - (30).

Deriving an upper bound of maxi 6=y p
∗
i : We lever-

age the second part of Lemma 1 to derive an upper bound
of maxi 6=y p

∗
i . We assume Pr(W ∈ ∆E) > p′i, ∀i ∈

{1, 2, · · · , c} \ {y}. We can make the assumption be-
cause we aim to derive a sufficient condition. For ∀i ∈
{1, 2, · · · , c} \ {y}, we can find a region ∆i ⊆ ∆E such
that we have the following:

Pr(W ∈ ∆i) = p′i. (40)

We can find the region because p′i is an integer multiple of
1

(n
k)

. Given region ∆i, we define the following region:

Bi = ∆i ∪∆T∗ . (41)

For ∀i ∈ {1, 2, · · · , c}\{y}, we define a function Hi(ϕ) =
I(f(ϕ) = i), where ϕ ∈ Φ. Then, based on Equation (26)
and the definition of random variable W, we have:

Pr(Hi(W) = 1) = Pr(f(W) = i) ≤ p′i = Pr(W ∈ Bi).
(42)

We note that Pr(W = ϕ) < ε · Pr(Z = ϕ) if and only if
ϕ ∈ ∆T∗ and Pr(W = ϕ) = ε · Pr(Z = ϕ) if ϕ ∈ ∆i,

where ε =
(t
k)

(n
k)

. Based on the definition of random variable

Z, Equation (42), and Lemma 1, we have the following:

Pr(Hi(Z) = 1) ≤ Pr(Z ∈ Bi). (43)

Since we have p∗i = Pr(f(Z) = i) = Pr(Hi(Z) = 1),
Pr(Z ∈ Bi) is an upper bound of p∗i and can be computed
as follows:

Pr(Z ∈ Bi) (44)
=Pr(Z ∈ ∆i) + Pr(Z ∈ ∆T∗) (45)

=Pr(Z ∈ ∆i) + 1−
(
s
k

)(
t
k

) (46)

=Pr(W ∈ ∆i)/ε+ 1−
(
s
k

)(
t
k

) (47)

=
1

ε
· p′i + 1−

(
s
k

)(
t
k

) . (48)

By considering all possible i in the set {1, 2, · · · , c} \ {y},
we have:

max
i6=y

p∗i (49)

≤max
i6=y

Pr(Z ∈ Bi) (50)

=
1

ε
·max
i 6=y

p′i + 1−
(
s
k

)(
t
k

) (51)

≤1

ε
· p′e + 1−

(
s
k

)(
t
k

) , (52)



where p′e ≥ max
i 6=y

p′i.

Deriving the certified perturbation size: To reach our
goal Pr(f(Z) = y) > max

i 6=y
Pr(f(Z) = i), it is sufficient to

have the following:

1

ε
·

(
p′y −

(
1−

(
s
k

)(
n
k

))) >
1

ε
· p′e + 1−

(
s
k

)(
t
k

) (53)

⇐⇒
(
t
k

)(
n
k

) − 2 ·
(
s
k

)(
n
k

) + 1− p′y + p′e < 0. (54)

Since Equation (54) should be satisfied for all possible per-
turbed point cloud T ∗ (i.e., n − r ≤ t ≤ n + r), we have
the following sufficient condition:

max
n−r≤t≤n+r

(
t
k

)(
n
k

) − 2 ·
(
s
k

)(
n
k

) + 1− p′y + p′e < 0. (55)

When the above Equation (55) is satisfied, we have p′y −(
1− (s

k)
(n
k)

)
≥ 0 and Pr(W ∈ ∆E) =

(s
k)

(n
k)
≥ p′i,∀i ∈

{1, 2, · · · , c} \ {y}, which are the conditions that we rely
on to construct the region ∆y and ∆i(i 6= y). The certi-
fied perturbation size r∗ is the maximum r that satisfies the
above sufficient condition. Note that s = max(n, t) − r.
Then, our certified perturbation size r∗ can be derived by
solving the following optimization problem:

r∗ = argmax
r

r

s.t. max
n−r≤t≤n+r

(
t
k

)(
n
k

) − 2 ·
(

max(n,t)−r
k

)(
n
k

) + 1− p′y + p′e < 0.

(56)

B. Proof of Theorem 2
Similar to previous work [4, 10, 9], we show the tight-

ness of our bounds via constructing a counterexample. In
particular, when r > r∗, we will show that we can construct
a point cloud T ∗ and a point cloud classifier f∗ which sat-
isfies the Equation (4) such that the label y is not predicted
by our PointGuard or there exist ties. Since r∗ is the max-
imum value that satisfies the Equation (56), there exists a
point cloud T ∗ satisfying the following when r > r∗:(

t
k

)(
n
k

) − 2 ·
(
max(n,t)−r

k

)(
n
k

) + 1− p′y + p′e ≥ 0 (57)

⇐⇒
(
t
k

)(
n
k

) − (max(n,t)−r
k

)(
n
k

) + p′e ≥ p
′
y −

(
1−

(
max(n,t)−r

k

)(
n
k

) )
(58)

⇐⇒p′e
ε

+ 1−
(
max(n,t)−r

k

)(
t
k

) ≥ 1

ε
·

(
p′y −

(
1−

(
max(n,t)−r

k

)(
n
k

) ))
(59)

where t is the number of points in T ∗ and ε =
(t
k)

(n
k)

. Let

∆e ⊆ ∆E be the region that satisfies the following:

∆e ∩∆y = ∅ and Pr(W ∈ ∆e) = p′e. (60)

Note that we can find the region ∆e because we have p′y +

p′e ≤ 1. We let Be = ∆T∗ ∪∆e. Then, we can divide the
the region Φ \ (A ∩ Be) into c − 2 regions and we use Bi
to denote each region, where i ∈ {1, 2, · · · , c} \ {y, e}. In
particular, each region Bi satisfies Pr(T ∈ Bi) ≤ p′i. We
can find these regions since p′y +

∑
i 6=y p

′
i ≥ 1. Then, we

can construct the following point cloud classifier f∗:

f∗(ϕ) =

{
y, if ϕ ∈ A,
i, if ϕ ∈ Bi.

(61)

Note that the point cloud classifier f∗ is well-defined in the
space Φ. We have the following probabilities for our con-
structed point cloud classifier f∗:

Pr(f∗(W) = y) = Pr(W ∈ A) = p′y, (62)

Pr(f∗(W) = e) = Pr(W ∈ Be) = p′e, (63)
Pr(f∗(W) = i) = Pr(W ∈ Bi) ≤ p′i, (64)

where i ∈ {1, 2, . . . , c} \ {y, e}. Note that the point cloud
classifier f∗ is consistent with Equation (4). Moreover, we
have the following:

Pr(f∗(Z) = e) (65)
= Pr(Z ∈ Be) (66)

=
p′e
ε

+ 1−
(

max(n,t)−r
k

)(
t
k

) (67)

≥1

ε

(
p′y −

(
1−

(
max(n,t)−r

k

)(
n
k

) ))
(68)

= Pr(Z ∈ A) (69)
= Pr(f∗(Z) = y), (70)

where ε =
(t
k)

(n
k)

. Note that we derive Equation (68) from

(67) based on Equation (59). Therefore, for ∀r > r∗, there
exist a point cloud classifier f∗ which satisfies Equation (4)
and a point cloud T ∗ such that g(T ∗) 6= y or there exist ties.
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(a) Point perturbation attacks.
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(b) Point modification attacks.
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(c) Point addition attacks.
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(d) Point deletion attacks.

Figure 5: Comparing different methods under different attacks on ScanNet.
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Figure 6: (a) Training the point cloud classifier with vs. without subsampling. (b), (c), and (d) show the impact of k,
α, and N , respectively. The dataset is ScanNet.


