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Abstract

In this supplementary material, we demonstrate more details on the implementation procedure. Besides, we provide more
visual comparisons of algorithmic analysis to further evaluate the effectiveness of our proposed RUAS. Next, we present more
visual results on different challenging datasets among state-of-the-art approaches and our RUAS. Finally, we execute the task
of face detection in the dark to evaluate the practical values of low-light image enhancement methods.

1. Implementation Details
We considered the same search space (with 3 fundamental cell structures) for IEM and NRM, but defined their cells with

different channel widths (i.e., 3 for IEM and 6 for NRM). During the search period, we searched the architectures for IEM
and NRM by using our cooperation strategy. As for the parameter setting of the search process, the maximum epoch was
set as 20, the batch size was set as 1, the initial learning rate was 3 × 10−4, the momentum was randomly sampled from
(0.5, 0.999) and the weight decay was 10−3. After the search process, we obtained the network parameters by training the
IEM and the NRM cooperatively. That is, following every iteration of the NRM, the IEM iterated 50 times to update its
parameters. In the process, the learning rates for IEM and NRM were set to 0.015 and 0.0001, respectively. The momentums
were set to 0.9 equally. We trained the IEM and the NRM for 800 iterations with a batch size of 1. Additionally, we used the
synthesized noisy images, generated by adding Gaussian noises to clean images for pre-training the NRM.

2. Visual Comparison of Naively Determined Architectures and Our RUAS
We have demonstrated quantitative evaluation of naively determined architecture and our RUAS in the manuscript (see

Fig. 8). We considered seven types of naively determined architectures including supernet and all the operations of a cell are
the 1×1 convolution (1-C), the 3×3 convolution (3-C), the 1×1 residual convolution (1-RC), the 3×3 residual convolution (3-
RC), the 3×3 dilation convolution with the dilation rate of 2 (3-2-DC), the 3×3 residual dilation convolution with the dilation
rate of 2 (3-2-RDC), respectively. Fig. 1 presented visual results by using these architectures. Obviously, most of the naively
determined architectures tended to produce strikingly over-exposure results (e.g., supernet, 1-C, 1-RC, 3-RC, 3-2-RDC).
3-C and 3-2-DC all failed to perform an ample brightness improvement. These appearances actually indicated the dramatic
drawback of heuristically-designed architectures, i.e., they were supposed to conduct extensive experimental verifications to
determine the best architecture, otherwise, the performance could not be guaranteed. In contrast, our searched architecture
could realize a better visual expression.

3. Visual Comparison of Different Search Strategies
In our manuscript, we have provided the comparison in terms of searched architectures and quantitative results (see Fig.

9) of different search strategies. Here we further showed some visual comparisons in Fig. 2. In which, the separate search
strategy is to search IEM and NRM one by one, that is, when searching for the NRM, the search procedure of the IEM has
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Figure 1. Visual comparison of naively determined architectures and our proposed RUAS on the MIT-Adobe 5K dataset [1].
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Figure 2. Visual comparison of different search strategies on the LOL dataset [2].

ended. The naive joint search is to view the IEM and NRM as parts of an entire network architecture, and just need to search
for all the architecture once. The cooperative joint search is our proposed new strategy. We could see that separate and naive
joint search strategies were difficult to provide a satisfying exposure improvement. A key reason was that they ignored the
latent relationship between illumination estimation and noise removal. In contrast, our proposed cooperative search strategy
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could mutually assist in optimizing these two steps in a cooperative manner, achieving a prominent enhanced performance.

4. More Visual Comparisons
Here, we provided more visual comparisons by comparing our RUAS with recently-proposed state-of-the-art deep net-

works including RetinexNet [2], EnGAN [4], SSIENet [11], KinD [12], DeepUPE [6], ZeroDCE [3], FIDE [7], and DRB-
N [9]. Fig. 3 and 4 demonstrated the enhanced results on the MIT-Adobe 5K dataset [1]. Fig. 5 showed the visual comparisons
on the DarkFace dataset [10]. Fig. 6 presented the visual results on the ExtremelyDarkFace dataset (used as the sub-challenge
in the CVPR 2020 UG2+Challenge1). From these evaluations, we can easily observe that our RUAS significantly outper-
formed those advanced deep networks.

5. Face Detection in the Dark
Finally, we also performed the task of face detection under low-light conditions, to evaluate the practical effects of the

low-light image enhancement methods. We utilized the baseline face detection model, Dual Shot Face Detection (DSFD) [5]
which was trained on the WIDER FACE dataset [8]. Table 1 reported the quantitative result (mAP and LAMR), we could
easily see that our RUAS attained the highest numerical scores both in mAP and LAMR. Further, we demonstrated visual
comparisons in Fig. 7. Obviously, our RUAS was remarkably superior to other methods, especially in the zoomed-in regions.
This experiment fully verified our superiority and potential application prospect.

Table 1. The quantitative performance of face detection on the DarkFace dataset [10].
Methods Input RetinexNet EnGAN SSIENet KinD DeepUPE ZeroDCE FIDE DRBN Ours

mAP 44.52% 46.51% 46.34% 48.04% 44.34% 48.92% 49.07% 41.02% 41.35% 50.13%
LAMR 74% 74% 75% 74% 75% 73% 73% 76% 75% 72%
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Figure 3. Visual comparison on the MIT-Adobe 5K dataset.
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Figure 4. Visual comparison on the MIT-Adobe 5K dataset.
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Figure 5. Visual comparison on the DarkFace dataset.
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Figure 6. Visual comparison on the ExtremelyDarkFace dataset.
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Figure 7. Visual comparison of face detection on the DarkFace dataset.
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