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A. Model Architecture

Fig. 1 shows the framework of our proposed method for
MMUIT tasks. The model is composed of an image gener-
ator G, a discriminator D, an encoder E and an MLP M .
G generates a new image from a source image xxxa and a
style code sss, which can either be extracted from a reference
image (i.e. sssp = E(xxxp), or from a randomly sampled vec-
tor zzz ∼ N(0, 1) through sssp = M(zzz). The discriminator
D learns to classify an image as either a real image in its
associated domain, or a fake image.

As explained in the main paper, we use Ltri, LSR and
Lcont to compact and disentangle the style space and to help
preserving the source content. In Fig. 1, sssn is a style code
of a domain different from the domain shared by sssp and sssa.

B. Analysing the Style-Space Compactness

B.1. Inter-domain Distance Distributions

In order to estimate the inter-domain distances and
the degree of compactness of a high-dimensional seman-
tic space, we compute the distribution of the distances
(ds(sssa, sssn)− ds(sssa, sssp)). Specifically, we use the CelebA-
HQ dataset [4] and we randomly sample 10,000 triplets
(sssa, sssp, sssn) where sssa ∼ SSSi, sssp ∼ SSSi and sssn ∼ SSSj with i 6=
j. Fig. 2 shows the distribution of (ds(sssa, sssn)− ds(sssa, sssp))
under different experimental settings.

Fig. 2 (a) shows that the distance distribution of the base-
line system (without using Ltri and LSR) is relatively wide
and corresponds to the largest median. Our Ltri loss with
a small margin can slightly reduce both the range between
the lower quartile to upper quartile and the range between
the minimum to the maximum score. Conversely, LSR

(λSR = 1.0) compacts the space significantly. Jointly us-
ing LSR and Ltri (α = 0.1), the LSR-only distribution is
slightly shifted up. Fig. 2 (b) shows the impact of λSR when
we use LSR without Ltri. Conversely, Fig. 2 (c) analyses
the case of jointly using LSR (with λSR = 1.0) and Ltri
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while changing the margin α. The latter experiment shows
that the Triplet Margin loss can adjust the distance between
style clusters, since the ranges between the minimum and
the maximum score are shifted when using a larger α.

The corresponding PS scores are presented in Fig. 3,
which shows that increasing λSR helps smoothing the
space, but when λSR > 0.5, only limited improvements
are obtained (see Fig. 3 (a)).

As shown in the main paper, the Triplet loss significantly
influences the image quality and smoothness of I2I transla-
tions. Interestingly, the margin α also plays an important
role. Using a small positive margin (e.g., 0.1) is enough to
keep the disentanglement and achieve the best PS score, as
shown in Fig. 3 (b). Meanwhile, a large margin can push
the style clusters far away from each other, which may be
harmful for the smoothness degree of the space.

B.2. An Alternative Style Regularization

A possible alternative to the style-regularization loss
(LSR), is based on the following formulation, whose goal is
to compact the style codes close to the surface of the zero-
centered, n-dimensional unit sphere:

Lsph = Esss∼SSS [|‖sss‖2 − 1|] (1)

where ‖ · ‖2 is the L2 norm. Note that, since the volume
of the whole n-sphere is larger than the volume of its sur-
face, Lsph leads to a much more compact space compared
to LSR. Tab. 1 quantitatively compares Lsph with LSR and
shows that a very compact space (Lsph) leads to a higher
smoothness but with a low diversity. This finding is quali-
tatively confirmed in Fig. 4. This comparison indicates that
there exists a trade-off between the smoothness of the space
and the diversity of generated images.

B.3. A Space Visualization Experiment

We perform an additional experiment on the MNIST
dataset [7] to interpret the results of our model and di-
rectly visualize the distributions of style codes. In this ex-
periment, we consider the categories of handwritten digits



Figure 1: Our MMUIT generative framework and the style-code sampling strategies.
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Figure 2: Distribution of (ds(sa, sn) − ds(sa, sp)) on different experimental settings on the CelebA-HQ dataset. (a) shows
that LSR helps to compact the style space, while Ltri can adjust the distance between the style clusters. (b) shows that the
weight of the LSR can control the compactness of the style space. (c) shows that increasing the margin α in Ltri has an effect
on the distances between clusters.

Model FID↓ LPIPS↑ PS↑ FRD↓

LSR 23.37 .337 .504 .837
Lsph 23.66 .103 .897 .808

Table 1: A comparisons betweenLSR andLsph on a gender
translation task using the CelebA-HQ dataset.

as “styles” and we set the dimension of style codes to 2,
such that they can be easily plotted in a two-dimensional
coordinate system without reducing the representation di-
mensionality with non-linear projections (e.g. t-SNE). As
shown in Fig. 5 (a), the original style codes without using

our proposed losses, is scattered in a non-compact space,
where there are many “training gaps”. Once we increase
the weight of λSR, the style codes are pushed in a more
compact space. However, the clusters (i.e., the domains)
are highly entangled, as shown in Fig. 5 (b). Conversely,
the triplet loss alleviates this issue by separating the com-
pacted clusters, as shown in Fig. 5 (c).

Moreover, we select two clusters with large “training
gaps” (i.e., “2” (green color) and “7” (grey color)) in the
original space Fig. 5 (a). Fig. 6 (a) shows an example of
interpolation results between “2” and “7” with large “train-
ing gaps”, showing, as expected, that the generated images
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Figure 3: An ablation study on the influence of both (a)
the SR loss weigh λSR and (b) the triplet loss margin α
(λSR = 1.0) in the PS scores. The black dashed line refers
to StarGAN v2 [3].

contain artifacts. Fig. 6 (b) refers to the same interpola-
tion between “2” and “7” in the setting with λSR = 1.0.
It seems that, due to the cluster overlapping, the interpola-
tion traverses another cluster (i.e., “4”) while moving from
“2” to “7”. Finally, the triplet loss is able to disentangle the
compact space, as shown in Fig. 6 (c), where no “intruder”
is generated when interpolating between the two domains.

C. PS Details
The proposed PS score requires a perceptual distance

metric ψ(·, ·). We chose to use the LPIPS [11] distance,
which was shown to well align to human judgements. How-
ever, although Zhang et al. [11] claim that LPIPS is a metric,
its formulation is based on the squared Euclidean distance
between deep learning features:

d(xxx1,xxx2) =
∑
l

1

HlWl

∑
h,w

wl‖yyyl1 − yyyl2‖22 (2)

where xxx1 and xxx2 are image patches, yyyl is a feature extracted
with a pretrained networkF (e.g., AlexNet [6]) using its l-th
layer, and the weights wl are layer-specific weights trained
to mimic the human perception. Thus, Eq.(2) does not obey
to the Triangle Inequality, which is necessary for a dis-
tance to be a metric. To avoid this problem, we re-train the
wl weights using an Euclidean-distance formulation, which
gives us a proper metric (called LPIPS* in the rest of this
Supplementary Material):

d′(xxx1,xxx2) =
∑
l

1

HlWl

∑
h,w

wl‖yyyl1 − yyyl2‖2. (3)

Following the original paper [11], the networkF used in our
paper is an AlexNet [6] pre-trainted on ImageNet where a
linear classifier (i.e., the the wl weights) is trained to learn
a human perception distance.
Comparison with other smoothness metrics. The
smoothness of a latent style space can also be evaluated us-
ing LPIPS [11] and the PPL [5] scores. In ideally smooth

Model Percep. PS↑ LPIPS↓ PPL↓

Distance Intra Inter Intra Inter Intra Inter

[3]
LPIPS .877 .670 .005 .012

19.21 57.19
LPIPS* .545 .359 .061 .107

Ours
LPIPS .850 .840 .003 .006

9.84 22.78
LPIPS* .625 .485 .047 .071

Table 2: Comparing different smoothness metrics. We use
two different basic perceptual distances for all the met-
rics: the original LPIPS (Eq.(2)) and the revised LPIPS*
(Eq.(3)). The LPIPS column refers to the diversity degree
[11]. “Intra” and “Inter” refer to intra-domain and inter-
domain interpolations, respectively.

interpolations, the perceptual distance (LPIPS) between two
neighbouring interpolations should be as low as possible
(i.e., high similarity). Similarly, the PPL should be as low
as possible to indicate the smoothness of the space. Note
that when the model exhibits a mode collapse problem, we
can have PPL=0 (or LPIPS=0). Despite this, we compare
the LPIPS, PPL and PS scores on an additional experiment,
where we randomly use both intra and inter-domain inter-
polation lines. For each interpolation line we generate 20
images. Tab. 2 shows that: (1) the higher the PS score, usu-
ally the lower the LPIPS and the PPL score; (2) our PS met-
ric based on LPIPS* is more consistent with the LPIPS and
the PPL with respect to the smoothness degree. Moreover,
our PS metric is more interpretable, as it ranges between 0
and 1, while the alternatives range in [0,∞].

Percepual Distance Num. of Interpolation

10 20 50 100

PPL 120.63 457.53 2122.33 6369.93
LPIPS 0.133 0.106 0.066 0.042
LPIPS* 1.150 1.424 1.723 1.908

Table 3: The sum of the perceptual distances along the same
interpolation lines averaged over all the generated images.
This table shows the linearity of various perceptual distance
metrics.

Number of Interpolations. We also compute the robust-
ness of the different metrics on a high number of interpola-
tions in Tab. 3, where we use the same start-end style codes
for all the metrics. Tab. 3 shows that PPL is not a linear met-
ric and it is sensitive to the interpolation step size (i.e., the
smaller the interpolation step size, the larger the PPL score).
Similarly, LPIPS is also not a linear metric and it tends to
decrease when the number of interpolations increase. Con-
versely, the proposed PS score is consistent, it satisfies the
triangle inequality and its behaviour is more linear.
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Figure 4: Visual comparisons between (a) LSR and (b) Lsph.

Figure 5: The distributions of style codes on a MNIST-based toy experiment. The original latent style space (a), using only
LSR with different loss weights λSR (b), and using LSR (λSR = 1.0) and Ltri with different margin values α (c).
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Figure 6: Interpolations results on MNIST between domain
“2” and domain “7”. (a) Original space, (b) Using only
LSR (λSR = 1.0). (c) Using LSR (λSR = 1.0) and Ltri

(α = 0.5).

Interpolation Strategies. Finally, we test the robustness
of the PS score with respect to two different interpolation
strategies (i.e., lerp and slerp [5]). As shown in Tab. 4, both
our methdod and StarGAN v2 [3] achieve a slightly better

Model Interpolation PS↑ LPIPS↓ PPL↓

Intra Inter Intra Inter Intra Inter

[3]
Lerp

.545 .359 .061 .107 19.21 57.19
Ours .625 .485 .047 .071 9.84 22.78

[3]
Slerp

.531 .336 .065 .120 19.69 64.81
Ours .607 .404 .049 .083 10.53 26.17

Table 4: Different interpolation strategies. Both StarGAN
v2 [3] and the our method achieve a better performance with
“lerp”.

result when using the linear interpolation (lerp), which in-
dicates the linearity of the style space.



D. Face Recognition Distance
Fig. 7 shows an example of face translation, which in-

dicates the crucial issue of identity preservation. For ex-
ample, an arbitrary female face can be realistic for a dis-
criminator, but if the original-person identity is completely
lost, this is not the desired output of a gender translation.
Fig. 8 shows a comparisons based on a smile translations
task on the CelebA-HQ dataset, which further shows the
importance of the identity preservation. The StarGAN gen-
erated images frequently loose the identity of the source im-
ages, while ours do not. Moreover, we see that Lcont is very
important both for the identity and the background preser-
vation.

E. LPIPS for Diversity
The state of the art models are often evaluated through

the LPIPS distance. Usually, for each input, different tar-
get styles are randomly sampled. Then, the LPIPS is com-
puted on all the generated outputs to model the diversity
(also called multi-modality) of the generated images. How-
ever, a high LPIPS distance is not always desirable. For
example, a high LPIPS value can be produced also when:

• The generated images do not always look real (e.g. the
images with artifacts shown in the first row of Fig. 9).

• The domain-independent part of the image is not pre-
served. For example, when the background appear-
ance has drastically changed (e.g., Fig. 8 (a)) or when
the person-identity is not preserved (e.g., Fig. 8 (a) and
Fig. 8 (b)).

For these reasons, we believe that in an MMUIT task,
LPIPS scores should be taken with a pinch of salt, espe-
cially when the model is not good enough to preserve the
domain-independent part of the source image.

F. Additional Details
F.1. Datasets

Following StarGAN v2 [3], we use the CelebA-HQ [4]
and the AFHQ [3] dataset. CelebA-HQ is a high-quality
version of the CelebA [9] dataset, consisting of 30,000 im-
ages with a 1024×1024 resolution. We randomly select
2,000 images for testing and we use all the remaining im-
ages for training. Differently from StarGAN v2, we also test
the smile and the age attributes. AFHQ consists of 15,000
high-quality images at 512×512 resolution. The dataset in-
cludes three domains (cat, dog, and wildlife), with 5,000
images each. We select 500 images as the test set for each
domain and we use all the remaining images for training.
AFHQ and CelebA-HQ are tested at a 256×256 resolution
(note that we use a 128×128 resolution in the comparisons

with TUNIT [1]). In this Supplementary Material we also
used the low-resolution MNIST [8] dataset, which consists
of 60,000 training samples and 10,000 testing samples with
a 32×32 resolution.

F.2. Compared Methods

We use the official released codes for all the compared
methods, including StarGAN v2 [3]1, HomoGAN [2]2, In-
terFaceGAN [10]3 and TUNIT [1]4. In the main paper (Sec.
4.2) we show how our proposed losses are combined with
(i.e., simply added to) the StarGAN v2 losses. Similarly, in
case of TUNIT, we use all the original losses of [1] (Ltunit)
and we add LSR and Ltri (without using our content loss),
which leads to: Ltunit + LSR + Ltri.

InterFaceGAN [10] is not a I2I translation model, and
there is no separation between the “content” and the “style”
representations. Moreover, this method linearly interpolates
codes on a StyleGAN [5] pre-trained semantic space. Thus,
it is not easy to fairly compare MMUIT models with Inter-
FaceGAN. In our paper, when we compare MMUIT models
with InterFaceGAN, we start from a StyleGAN generated
imagexxx and we modify its semantics by generating two new
images xxx′ = G(zzz + −3nnn)) and xxx′′ = G(zzz + 3nnn)), where
nnn is the unit normal vector defining a domain-separation
hyperplane (e.g. smile vs non-smile) learned by InterFace-
GAN. In the semantic space of smile, xxx′ is an image with
no smile, while xxx′′ an image with more smile. These two
randomly images are then used as the reference images for
the encoders of each compared model (including ours) to
generate the style codes. Note that, using StyleGAN based
reference images, most likely favours InterFaceGAN with
respect to all the other compared methods.

G. More Experiments
More visual comparisons with StarGAN v2 [3], Homo-

GAN [2], InterFaceGAN [10] and TUNIT [1] are shown
in Fig. 9-10. Fig. 11-13 show more visual results of gen-
der, smile and age translations on the CelebA-HQ dataset.
Fig. 14-16 show more visual results of animal translations
on the AFHQ dataset.

1https://github.com/clovaai/stargan-v2
2https://github.com/yingcong/HomoInterpGAN
3https://github.com/genforce/interfacegan
4https://github.com/clovaai/tunit
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Figure 7: The synthesized images with “green” bounding box are with lower FRD scores, in which identity features are
preserved better. However, FID and IS metrics are not aware of identity preserving.

Figure 8: A visual comparison for the smile translation task on the CelebA-HQ dataset. (a) StarGAN v2 [3], (b) our proposed
method without Lcont and (c) our proposed method with Lcont. This comparison shows that a smooth style space can better
preserve the person identity. Moreover, using Lcont significantly boosts the the input identity preservation.



Figure 9: Additional comparisons between StarGAN v2 [3], HomoGAN [2], InterFaceGAN [10] and our proposed method
on a gender translation task on the CelebA-HQ dataset [4].



Figure 10: An additional comparison between TUNIT [1] and our proposed method on a truly unsupervised image-to-image
translation task using the AFHQ dataset [3] (domain-level annotations are not provided).



Figure 11: More examples of gender translation on the CelebA-HQ dataset [4].



Figure 12: More examples of smile translations on the CelebA-HQ dataset [4].



Figure 13: More examples of age translations on the CelebA-HQ dataset [4].



Figure 14: More examples of animal translations on the AFHQ dataset [3].



Figure 15: More examples of animal translations on the AFHQ dataset [3].



Figure 16: More examples of animal translations on the AFHQ dataset [3].



Figure 17: More examples of digits translations on the MNIST dataset [8].
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[8] Yann LeCun, Léon Bottou, Yoshua Bengio, Patrick Haffner,
et al. Gradient-based learning applied to document recogni-
tion. Proceedings of the IEEE, 86(11):2278–2324, 1998. 5,
15

[9] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang.
Deep learning face attributes in the wild. In ICCV, 2015.
5

[10] Yujun Shen, Jinjin Gu, Xiaoou Tang, and Bolei Zhou. Inter-
preting the latent space of gans for semantic face editing. In
CVPR, 2020. 5, 7

[11] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman,
and Oliver Wang. The unreasonable effectiveness of deep
features as a perceptual metric. In CVPR, 2018. 3


