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1. Detail Proofs of validity of phase spectrum

In this section, we demonstrate the details of theory anal-
ysis which aim to prove that the introduction of phase spec-
trum can help face forgery detection. We first show the
phase spectrum contains more information in Section 1.1,
and then we demonstrate how the extra information is uti-
lized to CNNs in Section 1.2. Finally we make a conclusion
that the phase spectrum help deepfake detection due to the
cumulative up-sampling in Section 1.3

1.1. What extra information will we get from
phase spectrum compared with amplitude
spectrum?

To simplify the calculation, we make all the mathemati-
cal derivation based on the one-dimension signal. We first
set up the basic notations used in this paper: x(n) and X(u)
denotes a 1D discrete signal and its Discrete Fourier Trans-
form (DFT), where n is the signal location and u represents
the frequency. R(u) and I(u) respectively denote the real
part and imaginary part of X(u). A(u) is the amplitude
spectrum and P(u) is the phase spectrum. And we use c(n)
and C(n) denote the convolution kernel and its DFT. And
we use ∗ to denote convolutional operation. Besides, F(·)
and F−1(·) represent the DFT and its inverse. So we have
X(u) = F(x(n)) and x(n) = F−1(X(u)).

Claim 1. Phase spectrum will keep more frequency compo-
nents which tend to zero in amplitude spectrum.

Proof. For a discrete non-periodic signal x(n), its DFT

X(u) is

X(u) =
1

N

N−1∑
n=0

x(n)e−j
2πun
N

=
1

N

N−1∑
n=0

x(n)(cos
2πun

N
− j sin 2πun

N
)

= R(u) + jI(u)

(1)

And the amplitude spectrum of X(u) is

A(u) =
√

R2(u) + I2(u) (2)

Axiom 1. Low-frequency components dominate the fre-
quency domain for a natural image, and many high-
frequency components are very small even tend to zero.

Base on the axiom 1, we define a frequency components
set as follows.

Definition 1. ∃ U = {u0, u1, · · · , um}, ∀uk ∈ U,
A(uk) ≈ 0.

According to the definition 1, we get

A(uk) ≈ 0 ⇐⇒ R(uk) ≈ ±0 and I(uk) ≈ ±0 (3)

For phase spectrum, we know that

P(u) = arctan
I(u)

R(u)
(4)

For every uk ∈ U, we get

P(uk) = arctan
I(uk)

R(uk)

≈ arctan±1 = ±π
4

(5)
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Our claim 1 is proved by Eq.(5).



1.2. Why do we need extra abundant frequency
components?

For a convolutional neural networks, the basic and key
operation is the convolution computation between input and
convolution kernel. According to the convolution theorem,
we know that x(n) ∗ c(n) ⇔ X(u) ·C(u).To simplify the
representation, we make a substitution that

X(u) =
1

N

N−1∑
n=0

x(n)e−j
2πun
N

= a0 + a1e
jθ1 + a2e

jθ2 + · · ·+ aN−1e
jθN−1

(6)

Similarly,

C(u) = b0 + b1e
jθ1 + b2e

jθ2 + · · ·+ bN−1e
jθN−1

=
1

N

N−1∑
n=0

c(n)e−j
2πun
N

(7)

Then, we make a claim as follows

Claim 2. Phase spectrum helps CNNs acquire and learn
more abundant frequency components which are ignored
with convolution calculations of amplitude spectrum.

Proof. With the derivation in 1.1, we assume that A(ui) ≈
0 when i > k. Thus, we can get

X(u) = a0 + a1e
jθ1 + · · ·+ ake

jθk (8)

and

X(u) ·C(u) = (a0 + a1e
jθ1 + · · ·+ ake

jθk) ·C(u) (9)

However, when we introduce the phase spectrum P(u),
P(u) 6= 0 with u > k. Then we can get

P(u) ·C(u) = (a0 + a1e
jθ1 + · · ·+ aN−1e

jθN−1) ·C(u)

= X(u) ·C(u) +E(u) ·C(u)
(10)

where

E(u) = ak+1e
jθk+1 + · · ·+ aN−1e

jθN−1 (11)
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1.3. Capturing up-sampling artifacts via phase
spectrum in face forgery

To detect the observed common artifacts, namely up-
sampling, we analyze it in the frequency domain.

Up-sampling will lead to the emergence of new fre-
quency components. And we make a claim as follows

Claim 3. Phase spectrum is more sensitive to up-sampling
artifacts and therefore helps face forgery detection.

Proof. The increase of spatial resolution in 2D corresponds
to the extension of the time domain in 1D. Assume that the
input x(n) is up-sampled by factor 2, then

x̂(n) =

{
x( 12n), n = 2k

0, n = 2k + 1
(12)

where k = 0, 1, 2, · · · , N − 1, and

X̂(u) =
1

2N

2N−1∑
n=0

x̂(n)e−j
2πun
2N

=
1

2N

N−1∑
n=0

x̂(2n)e−j
2πu2n

2N

=
1

2N

N−1∑
n=0

x(n)e−j
2π2un
N

= a0 + a1e
jθ1 + · · ·+ a2N−1e

jθ2N−1︸ ︷︷ ︸
2N items

(13)

Then we have x̂(n) = x( 12n) ⇔ X̂(u) = X(2u) with
the Eq. 13, which leads to the conclusion that the increase
of spatial resolution will result in the compression in the
frequency domain which is consistent with the property of
Fourier Transform (FT). In fact, the essence of DFT is the
principle value interval of Discrete Fourier Series (DFS)
and thus new frequency components are the duplicate of
origin frequency components.

Base on our claim in Section 1.1. We first assume the
amplitude spectrum XA(u) and the phase spectrum XP(u)
of original images x(n). It is

XA(u) = a0 + a1e
jθ1 + · · ·+ ake

jθk︸ ︷︷ ︸
(k+1) items

XP (u) = p0 + p1e
jθ1 + · · ·+ pN−1e

jθN−1︸ ︷︷ ︸
N items

(14)

and the corresponding up-sampling is

Xup
A (u) = a0 + a1e

jθ1 + · · ·+ a2N−1e
jθ2N−1

=a0+· · ·+akejθk︸ ︷︷ ︸
(k+1) items

+aNe
jθN+· · ·+aN+ke

jθN+k︸ ︷︷ ︸
(k+1) items

Xup
P (u) = p0 + p1e

jθ1 + · · ·+ p2N−1e
jθ2N−1︸ ︷︷ ︸

2N items
(15)

We define that yA(n) is the output of a convolution
layer with an input x(n) and its frequency domain form is
YA(u). And we get

yA(n) = x(n) ∗ c(n)
m

YA(u) =XA(u) ·C(u)

(16)



According to the claim in Section 1.2, we can deduce the
frequency domain form is

YA(u) = f0 + f1e
jθ1 + · · ·+ fk+N−1e

jθk+N−1︸ ︷︷ ︸
k+N items

(17)

And the corresponding form of the up-sampling is

Yup
A (u) = f0 + f1e

jθ1 + · · ·+ f2N+k−1e
jθ2N+k−1︸ ︷︷ ︸

2N items

(18)

In our work, we first take Inverse Discrete Fourier Trans-
form (IDFT) to phase spectrum and acquire the spatial do-
main form p(n) of phase. And we state a theorem named
the distributive law as follow,

Theorem 1. (f(·) + g(·)) ∗ h(·) = f(·) ∗ h(·) + g(·) ∗ h(·)

Then we consider that we directly concatenate x(n) and
p(n) in channel dimension based on theorem 1 and the out-
put YA+P (u) is

YA+P (u) = f0 + f1e
jθ1 + · · ·+ f2N−2e

jθ2N−2︸ ︷︷ ︸
2N−1 items

(19)

And the corresponding form of the up-sampling is

Yup
A+P (u) = f0 + f1e

jθ1 + · · ·+ f3N−2e
jθ3N−2︸ ︷︷ ︸

3N−1 items

(20)

�

According to the derivation in 1.3, we intuitively know
that the number of learnable frequency components is N
when we leverage the original image and its phase together,
but the number just is N − k without the phase spectrum.

2. The Further Analysis of Network Architec-
ture

In this section, we first make a detailed description of our
network architecture in Section 2.1. Then we analyzes the
technique of shallowing learning. To analyze the shallow
network, we mainly exploit the correlation between the per-
formance and the number of convolutional layers of various
backbone networks in this section. We respectively conduct
two experiments base on the XceptionNet in Section 2.2 and
ResNet34 in Section 2.3. We remove the convolutional lay-
ers step by step to reduce the receptive field gradually. And
all experiments settings remain the same with the main pa-
per. At the same time, the number of convolutional layers
and the size of receptive field are also compared. And the
way of calculating the size of receptive field is as follows.

RFl−1 = sl ·RFl + (kl − sl) (21)
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Figure 1: Network architecture details. The network ar-
chitecture is modified based on XceptionNet.

The Equation 21 can be used in a recursive algorithm to
compute the receptive field size of the network RF0. Then
it can be simplified as follows.

RF0 =

L∑
l=1

(
(kl − 1)

l−1∏
i=1

si)

)
+ 1 (22)

2.1. Details of the network architecture

To suppress high-level semantic features and extract
more texture features, we shallow the backbone Xception-
Net by throwing away several blocks, only retain the Xcep-
tion Block 1-3 and 12. The detailed architecture is shown
in Figure 1.

2.2. XceptionNet

We demonstrate the performance on XceptionNet with
different blocks. The results are listed in Table 1. By com-
paring the pristine XceptionNet, the proposed shallow net-
work improves the ACC and AUC scores whether in en-
tirely supervised way or cross-dataset evaluation. We also
notice that the performance will dramatically drop when
the network is too shallow, and we believe that this phe-
nomenon is due to the overly shallow network is unable to
extract sufficient implicit features for detecting forged face.

2.3. ResNet

We also show the results of ResNet34 in Table 2. Ac-
cording to the architecture of ResNet34, we randomly re-



Network FF++ Celeb-DF Layers RF0ACC AUC ACC AUC

Xcep-B1 78.79 80.20 67.08 63.51 5 19
Xcep-B2 85.87 89.70 70.97 71.34 8 43
Xcep-B3 88.59 92.31 71.94 73.38 11 91
Xcep-B4 89.75 93.74 73.20 75.40 14 187
Xcep-B5 90.68 93.20 72.63 74.15 17 283
Xcep-B6 90.78 94.61 70.60 72.89 20 379
Xcep-B7 91.44 95.01 72.22 74.80 23 475
Xcep-B8 90.22 92.60 72.73 74.17 26 571
Xcep-B9 89.69 91.91 72.85 72.89 29 667

Xcep-B10 91.32 94.42 72.22 74.85 32 763
Xcep-B11 90.72 93.52 72.64 74.98 35 859
Xcep-B12 89.35 92.49 70.81 72.33 38 955

XceptionNet 92.39 94.86 71.49 73.67 40 1083

Table 1: Quantitative results (ACC (%) and AUC (%)) on
different Xception networks with the proposed SPSL. The
corresponding number of convolutional layers and receptive
field are also shown. All models are trained on FF++ (HQ)
and tested on both FF++ (HQ) and Celeb-DF. The bold re-
sults are the best.

Network FF++ Celeb-DF BlockACC AUC ACC AUC

Res34-B1 75.57 56.82 63.23 48.44 [0,0,0,0]
Res34-B2 76.64 56.95 61.66 48.59 [1,1,1,1]
Res34-B3 67.51 58.60 64.18 60.53 [3,1,1,3]
Res34-B4 83.24 89.26 66.79 71.78 [3,2,3,3]
Res34-B5 74.52 54.24 63.46 48.24 [3,4,0,0]
ResNet34 71.55 81.58 65.19 66.90 [3,4,6,3]

Table 2: Quantitative results (ACC (%) and AUC (%)) on
different ResNet34 networks with the proposed SPSL. The
corresponding number of four types of basic blocks are
shown. All models are trained on FF++ (HQ) and tested
on both FF++ (HQ) and Celeb-DF. The bold results are the
best.

duce the number of four types of basic block respectively.
Compared with the original ResNet34, almost all shallow
ResNet34 networks outperform to an extent.

2.4. Discussion

We present the further analysis of the shallow network.
Even now the results demonstrate that the shallow network
to some extent helps forged face detection, there are still
some problems are worthy to study in the future. The most
vital thing is to find the best degree of shallow network. And
it is also important that if there is a universal strategy which
is suitable for all backbone networks.


