
Appendix for: Unsupervised Part Segmentation through Disentangling
Appearance and Shape

A. Implementation Details
A.1. TPS Transformation

We adopt the implementation open-sourced by [3] for
TPS transformation. The source control points are from a
10 × 10 regular grid. All parameters are sampled from a
gaussian distribution with zero mean and a given standard
deviation. Each control point is perturbed by a parameter
with standard deviation 0.001, and then applied with an ad-
ditional perturbation with a standard deviation 0.005 with
50% probability. For the affine component, we set the stan-
dard deviation as 0.1 for the translation parameter and 0 for
both the rotation and scale parameters. Note that all the co-
ordinates are normalized to be in the range [−1, 1] during
deformation.

A.2. Perceptual Loss

We use the perceptual loss as in previous works [3, 8].
An ImageNet-pretrianed VGG-19 [6] is adopted as a fea-
ture extractor in our experiments. Given a pair of im-
ages (an input image and a reconstructed image in this
work), we extract the output features of input, conv1 2,
conv2 2, conv3 2, conv4 2, conv5 2 layers from the pre-
trained VGG-19 for each image, and weighted average the
L2 distance of each pair of features. To balance the contri-
bution of each layer, the weight of each layer is set as the
reciprocal of its average L2 loss every 100 steps, as used in
[1, 3].

A.3. Image Generation

After the expand operation, the L dimensional appear-
ance features belonging to the same part are almost the
same, which makes reconstruction very challenging. The
encoding method proposed in [5] suggests that the coordi-
nates of each pixel can help on reconstruction. Therefore,
we normalize the coordinates of each pixel with respect to
image width and height and stack all the coordinates to form
a 2 × H ×W tensor. Then we concatenate them with the
rendered appearance feature maps Ai→j ∈ RL×H×W to
form a new tensor Ãi→j ∈ R(L+2)×H×W . In our imple-
mentation, we use Ãi→j as input to the decoder D instead
of Ai→j .

Dataset K(# of parts) λrec λcls λfg λbg
CelebA 4/8 1.5 1.5 0.5 1.0
AFLW 4/8 1.5 1.5 0.5 1.0
CUB-1/2/3 4 1.5 1.5 0.3 1.0
VOC-car 4 1.5 1.0 0.3 0.1
VOC-bus 4 1.5 1.0 0.5 0.1
VOC-horse 4 1.5 3.0 0.3 0.1
VOC-aero 4 1.5 3.0 0.3 0.1
VOC-motor 4 1.0 1.0 0.3 0.1
VOC-cow 4 1.5 2.0 0.3 0.1
VOC-sheep 4 1.5 2.0 0.5 0.1
DeepFashion 9 1.5 3.0 0.5 0.1

Table 1: Settings for different experiments: the number of
parts and combination weights in the final loss function.

A.4. Final Loss Function.

In the proposed method, the final loss function is a lin-
ear combination of four loss functions, including the recon-
struction lossLrec, the part classification lossLcls, the fore-
ground loss Lfg , and the background loss Lbg , as

Lsum = λrecLrec + λclsLcls + λfgLfg + λbgLbg. (1)

We use different settings for different tasks, as shown
in Table 1. These combination weights were empirically
obtained by coarse grid search. The models were trained on
one GeForce RTX 2080 Ti GPU with 32 images per step
for 30 epochs. Our model is light and efficient. On average,
each model completes training in three hours.

B. More Visualization Results
We provide more visualization results on wild

CelebA [4], CUB [2], and PASCAL VOC [7] from
Fig. 1 to Fig. 4. These results indicate that our method
keeps a good semantic consistency for objects with large
variations.



Figure 1: Visualization results on the wild CelebA dataset with K = 4.



Figure 2: Visualization results on the wild CelebA dataset with K = 8.



Figure 3: Visualization results on the CUB dataset with K = 4.
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Figure 4: Visualization results on PASCAL VOC.
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