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1. More results
Depth evaluation Figure 3 shows more results of our
method, MVDepth [7], DPS [2], NAS [3], Neuralrgbd [4]
and DELTAS [6]. Compared with other methods, our esti-
mated depth maps are more accurate and have fewer noises
even in texture-less regions, such as table, wall, floor and
kitchen cabinets. Moreover, from Table 2 and Table 3, we
can see that our model not only performs better than other
methods on ScanNet [1] dataset, but also shows superior
generalization ability on unseen 7scenes [5] dataset.

Temporal coherence To measure the temporal consis-
tency of the estimated depth maps, we adopt standard de-
viation of the mean absolute error of the estimated depth
maps for evaluation:
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where i is the index of estimated depth map, e is the mean
absolute error of estimated depth map and ground truth
depth map, and N is the total number of estimated depth
maps.

As shown in Table 1, the estimated depth maps of our
methods are more accurate and temporally consistent than
those of other methods. The Plot of absolute errors of
depth maps in Figure 1 shows that our method could gen-
erate more temporal coherent estimated depth maps than
other methods. Moreover, as shown in Figure 4 and Fig-
ure 2, by utilizing temporal coherence, our model generates
more temporally consistent depth maps of continuous video
frames than other methods.

2. Discussions
Epipolar Spatio-Temporal transformer We consider
several variants of our method for ablation studies. We de-
note the depth estimated by the model without EST trans-
former as independent depth, the depth jointly estimated

Table 1. Comparison of temporal coherence over ScanNet and
7scenes datasets with evaluation depth range 0 ∼ 5m.

Method ScanNet 7scenes
Abs Std Abs Std

DPS 0.1887 0.2243 0.2907 0.3271
NAS 0.1823 0.2177 0.2874 0.3252
Neuralrgbd 0.1642 0.1848 0.4051 0.4600
DELTAS 0.1650 0.1886 0.2874 0.3003
Ours 0.1432 0.1673 0.2498 0.2743

by the model with EST transformer as joint depth, and the
depth sequentially estimated by the model using ESTM op-
eration as ESTM depth. As shown in Table 4, when using
the hybrid cost regularization network, both joint depth and
ESTM depth are better than independent depth. However,
when adopting the pure 3D regularization network (without
ContextNet), joint depth is worse than independent depth,
and the improvement of ESTM depth is trivial.

In fact, there are two key factors that may influence the
effect of EST transformer: the quality of estimated depth
before being enforced temporal coherence and the accuracy
of calibrated camera poses of video frames. For models
without ContextNet, their estimated depth is not accurate
enough, the joint estimation will propagate wrong informa-
tion across the multiple depth maps. But ESTM suffers
from it less because the errors can be alleviated gradually
as more frames are processed sequentially.

Moreover, as shown in Table 4, when ContextNet adopts
ResNet-18 as backbone, ESTM depth is a bit better than
Joint depth. When ContextNet adopts ResNet-50 as back-
bone, Joint depth outperforms ESTM depth a bit. This may
provide extra evidences that when the estimated depth is
not accurate enough, ESTM inference operation performs
better than joint estimation due to long-term temporal co-
herence it unitizes.

Overall, the combination of the hybrid regularization
network and EST transformer can boost the best perfor-
mance.
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The backbone of ContextNet Unlike a single 3D cost
regularization network used in prior works, we adopt a hy-
brid network to learn 2D global context information and
3D local matching information separately. Table 4 shows
that models with ContextNet outperforms that without Con-
textNet. To fully demonstrate the effect of ContextNet, we
further test our models with ContextNet adopting ResNet-
18 and ResNet-50 as backbone. As shown in Table 5,
replacing ResNet-18 by ResNet-50 as the backbone of
ContextNet can lead to better results on ScanNet [1] and
7scenes [5] datasets.

References
[1] Angela Dai, Angel X Chang, Manolis Savva, Maciej Halber,

Thomas Funkhouser, and Matthias Nießner. Scannet: Richly-
annotated 3d reconstructions of indoor scenes. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 5828–5839, 2017. 1, 2, 3

[2] Sunghoon Im, Hae-Gon Jeon, Stephen Lin, and In So Kweon.
Dpsnet: end-to-end deep plane sweep stereo. arXiv preprint
arXiv:1905.00538, 2019. 1

[3] Uday Kusupati, Shuo Cheng, Rui Chen, and Hao Su. Nor-
mal assisted stereo depth estimation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 2189–2199, 2020. 1

[4] Chao Liu, Jinwei Gu, Kihwan Kim, Srinivasa G Narasimhan,
and Jan Kautz. Neural rgb (r) d sensing: Depth and uncer-
tainty from a video camera. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
10986–10995, 2019. 1

[5] Jamie Shotton, Ben Glocker, Christopher Zach, Shahram
Izadi, Antonio Criminisi, and Andrew Fitzgibbon. Scene co-
ordinate regression forests for camera relocalization in rgb-d
images. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 2930–2937, 2013. 1, 2,
3

[6] Ayan Sinha, Zak Murez, James Bartolozzi, Vijay Badri-
narayanan, and Andrew Rabinovich. Depth estimation by
learning triangulation and densification of sparse points for
multi-view stereo. arXiv preprint arXiv:2003.08933, 2020. 1

[7] Kaixuan Wang and Shaojie Shen. Mvdepthnet: real-time mul-
tiview depth estimation neural network. In 2018 International
Conference on 3D Vision (3DV), pages 248–257. IEEE, 2018.
1

[8] Jianxiong Xiao, Andrew Owens, and Antonio Torralba.
Sun3d: A database of big spaces reconstructed using sfm and
object labels. In Proceedings of the IEEE International Con-
ference on Computer Vision, pages 1625–1632, 2013. 3

2



Table 2. Comparison of depth estimation over ScanNet [1] dataset.

Range Method Abs Rel Abs Sq Rel RMSE RMSE log σ < 1.25 σ < 1.252 σ < 1.253

10m

MVDepth 0.1167 0.2301 0.0596 0.3236 0.1610 84.53 96.39 99.06
MVDepth-FT 0.1116 0.2087 0.0763 0.3143 0.1500 88.04 97.34 99.19
DPS 0.1200 0.2104 0.0688 0.3139 0.1604 86.40 96.12 98.60
DPS-FT 0.0986 0.1998 0.0459 0.2840 0.1348 88.80 97.85 99.20
NAS 0.0941 0.1928 0.0417 0.2703 0.1269 90.09 98.26 99.47
CNM 0.1102 0.2129 0.0513 0.3032 0.1482 86.88 97.22 99.32
DELTAS 0.0915 0.1710 0.0327 0.2390 0.1226 91.47 98.72 99.70
Ours-EST(concat) 0.0818 0.1536 0.0301 0.2234 0.1130 92.99 98.70 99.67
Ours-EST(adaptive) 0.0812 0.1505 0.0298 0.2199 0.1104 93.13 98.71 99.68

5m
Neuralrgbd 0.1013 0.1657 0.0502 0.2500 0.1315 91.60 97.90 99.27
Ours-EST(concat) 0.0811 0.1469 0.0279 0.2066 0.1109 93.19 98.77 99.70
Ours-EST(adaptive) 0.0805 0.1438 0.0275 0.2029 0.1083 93.33 98.78 99.71

Table 3. Comparison of depth estimation over 7Scenes [5] dataset.
.

Range Method Abs Rel Abs Sq Rel RMSE RMSE log σ < 1.25 σ < 1.252 σ < 1.253

10m

MVDepth 0.2213 0.4055 0.2401 0.5154 0.2492 67.33 89.34 96.15
MVDepth-FT 0.1905 0.3304 0.1319 0.4260 0.2221 71.93 92.75 97.92
DPS 0.1963 0.3471 0.1970 0.4625 0.2297 72.51 91.25 96.95
DPS-FT 0.1675 0.2970 0.1071 0.3905 0.2061 76.03 93.40 98.08
NAS 0.1631 0.2885 0.1023 0.3791 0.1997 77.12 83.94 98.31
CNM 0.1602 0.2751 0.0819 0.3602 0.2030 76.81 94.49 98.64
DELTAS 0.1548 0.2671 0.0889 0.3541 0.1860 79.66 95.28 98.77
Ours-EST(concat) 0.1458 0.2554 0.0745 0.3436 0.2065 79.82 95.19 98.77
Ours-EST(adaptive) 0.1465 0.2528 0.0729 0.3382 0.1967 80.36 95.52 98.86

5m
Neuralrgbd 0.2334 0.4060 0.2163 0.5358 0.2516 68.03 89.94 96.47
Ours-EST(concat) 0.1458 0.2554 0.0745 0.3435 0.2065 79.82 95.20 98.77
Ours-EST(adaptive) 0.1465 0.2528 0.0729 0.3382 0.1967 80.36 95.52 98.86

Table 4. The usefulness of ContextNet and EST transformer. We test models with various settings on SUN3D [8] dataset.

ContextNet Transformer Inference type Abs Rel Abs Sq Rel RMSE RMSE log σ < 1.25 σ < 1.252 σ < 1.253

7 7 Independent 0.1338 0.3333 0.0994 0.4897 0.1881 80.89 94.64 98.28
7 3 Joint 0.1391 0.3429 0.1291 0.4927 0.1877 81.36 94.32 97.80
7 3 ESTM 0.1345 0.3319 0.1073 0.4822 0.1858 81.43 94.73 98.12

3 ResNet-18 7 Independent 0.1253 0.3213 0.0873 0.4623 0.1759 83.31 95.91 98.49
3 ResNet-18 3 Joint 0.1269 0.3180 0.0933 0.4605 0.1758 83.61 95.58 98.25
3 ResNet-18 3 ESTM 0.1262 0.3160 0.0897 0.4580 0.1756 83.63 95.68 98.31
3 ResNet-50 7 Independent 0.1258 0.3220 0.0897 0.4657 0.1894 82.82 95.55 98.33
3 ResNet-50 3 Joint 0.1243 0.3133 0.0883 0.4556 0.1910 83.52 95.60 98.30
3 ResNet-50 3 ESTM 0.1254 0.3137 0.0884 0.4554 0.1913 83.43 95.68 98.33

Table 5. The effect of different backbone for ContextNet. We run our models using ResNet-18 and ResNet-50 as ContextNet respectively
on SUN3D dataset by ESTM inference operation.

Method ScanNet 7scenes
Abs Rel Abs Sq Rel RMSE σ < 1.25 Abs Rel Abs Sq Rel RMSE σ < 1.25

Ours (ResNet-18) 0.0869 0.1600 0.0393 0.2313 92.56 0.1522 0.2572 0.0852 0.3398 80.36
Ours (ResNet-50) 0.0812 0.1505 0.0298 0.2199 93.13 0.1465 0.2528 0.0729 0.3382 80.36
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Figure 1. Depth accuracy diagram of whole video frames. We plot the mean absolute errors of the estimated depth maps of several videos
in ScanNet and 7scenes. According to the curves and standard deviation, our model generates more temporally consistent depth maps.
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Figure 2. Depth comparisons of ten consecutive video frames. The estimated depth maps of model method are more temporally coherent
than those of other models.
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Figure 3. Qualitative depth comparisons.
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Figure 4. Depth comparisons of three consecutive video frames. The estimated depth maps of model method are more temporally coherent
than those of other models.
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