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1. Details of Proposed Method
Here we provide more details of our proposed method, including the implementation of SHC, GRB, and the encoder-

decoder architecture, as well as the overall objectives employed in our model training.

1.1. Detailed Architecture

Figure 1 illustrates our U-Net-alike model together with the Bidirectional Content Transfer (BCT) model and the revised
contextual attention on skip connection. Moreover, we provide detailed illustration of Global Residual Block (GRB) and Skip
Horizontal Connection (SHC) in Figure 2 and Figure 3 respectively. Our implementation of GRB is identical to the one in [4],
while we adapt the original implementation of SHC in [4] to fit our scenario of wide-range image blending. To be specific,
as shown in Figure 3(a), we take the feature maps of Ileft and Iright extracted from a certain layer L in the encoder as well
as the ones extracted from the corresponding layer of L in the decoder and concatenate them along the channel dimension,
SHC is then exploited to fuse the information obtained from both encoder and decoder to generate more refined feature maps.
Regarding the layer where we apply our revised contextual attention mechanism, besides using SHC to improve the results
of the left and the right regions, we uses SHC to combine the reference information computed from the contextual attention
mechanism (i.e. the reconstruction of the intermediate region based on the patches from the left and the right regions) and
the feature map of the intermediate region extracted from the decoder, the illustration is shown in Figure 3(b). Please notice
that for each layer, the weights of SHC used for both the left and the right regions are shared in our implementation, while
the weights of SHC used for the intermediate region are not shared.

1.2. Overall Objectives

Our objective function for the self-reconstruction stage in our training procedure can be expressed as:

LSR =LSR
pixel + LSR

feat rec + λmrfLSR
mrf + Lfeat con + λadvLadv G, (1)

where λmrf and λadv are used to weight the loss functions for controlling their balance, and λmrf and λadv are set to 0.01
and 0.0018 respectively in our experiments.

Subsequently, our objective function for the fine-tuning stage in our training procedure can be expressed as:

LFT =LSR
pixel + LFT

pixel + LSR
feat rec + λmrfLSR

mrf + Lfeat con + λadvLadv G. (2)

It is worth noting that here we use both training examples of having Ileft and Iright obtained from same image as well as
the ones with Ileft and Iright obtained from different images, and therefore the training objective of this stage contains loss
functions for both types of training examples.

1.3. Training Details

Our implementation is based on Pytorch with Nvidia Tesla V100 SXM2 32GB GPU. The networks are trained with Adam
optimizer [1], with the learning rate set to 10−3 for the self-reconstruction training stage, and 2 × 10−3 for the fine-tuning
training stage with decaying step 50 and decaying rate 0.5. Both training stages are run for 200 epochs.
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2. More Qualitative Results
2.1. Qualitative Comparisons

Here we provide more examples of qualitative comparisons with respect to several baselines (from image inpainting or
outpainting) in Figure 4.

2.2. Qualitative Results

Here we provide more qualitative results in Figure 5, 6, and 7, as well as more full panoramic images in Figure 8, 9 and
10, produced by our proposed method.
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Figure 1: Illustration of our full model architecture. Our full model takes Ileft and Iright as input, and compresses them into
compact feature representations f̃left and f̃right individually via the encoder. Afterwards, our novel Bidirectional Content
Transfer (BCT) module is used to predict f̃mid from f̃left and f̃right. Lastly, based on the feature f̃ , which is obtained by
concatenating {f̃left, f̃mid, f̃right} along the horizontal direction, the decoder D generates our final result Ĩ . Noting that
there is a contextual attention mechanism on the skip connection between the encoder and decoder, which helps to enrich the
texture and details of our blending result. Please notice that all the instance normalization is removed in the layers marked
with “*”.
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Figure 2: Illustration for the architecture of Global Residual Block (GRB).
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(a) SHC w/o Contextual Attention.
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(b) SHC w/ Contextual Attention.

Figure 3: Illustration for the architecture of Skip Horizontal Connection (SHC).
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Figure 4: Qualitative comparison with respect to several baselines of image inpainting and image outpainting: (a) input
images, (b) CA [6], (c) PEN-Net [7], (d) StructureFlow [2], (e) HiFill [5], (f) ProFill [8], (g) SRN [3], (h) Yang et al. [4], and
(i) Ours.
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Figure 5: Qualitative examples from our proposed method (noting that for each image here, its leftmost one-third and the
rightmost one-third are the inputs Ileft and Iright respectively).
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Figure 6: Qualitative examples from our proposed method (noting that for each image here, its leftmost one-third and the
rightmost one-third are the inputs Ileft and Iright respectively).
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Figure 7: Qualitative examples from our proposed method (noting that for each image here, its leftmost one-third and the
rightmost one-third are the inputs Ileft and Iright respectively).
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Figure 8: Example results of full panoramic images. Given two different input image (the first and the second columns),
our method can construct a full panoramic image (the third column) that provides cyclic view by stitching the two blending
results generated from two opposite spatial arrangements (i.e. first→ second; and second→ first).
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Figure 9: Example results of full panoramic images. Given two different input image (the first and the second columns),
our method can construct a full panoramic image (the third column) that provides cyclic view by stitching the two blending
results generated from two opposite spatial arrangements (i.e. first→ second; and second→ first).
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Figure 10: Example results of full panoramic images. Given two different input image (the first and the second columns),
our method can construct a full panoramic image (the third column) that provides cyclic view by stitching the two blending
results generated from two opposite spatial arrangements (i.e. first→ second; and second→ first).
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