
Supplementary Document: Large-capacity Image Steganography Based on
Invertible Neural Networks

Shao-Ping Lu1∗ Rong Wang1∗ Tao Zhong1 Paul L. Rosin2

1TKLNDST, CS, Nankai University, Tianjin, China
2School of Computer Science & Informatics, Cardiff University, UK

slu@nankai.edu.cn; nkwangrong@163.com; zei.t@qq.com; RosinPL@cardiff.ac.uk

We provide more experimental results in this supplemen-
tary document. Sec. 1 presents the ablation experiments on
different numbers of invertible blocks or different structures
of our sub-modules; Sec. 2 shows how losses’s weights af-
fect the construction quality of the container and revealed
hidden images; Sec. 3 shows the exact hyper-parameters of
our models; Sec. 4 shows more visual results on comparing
our method against [1]’s method or the ground truths.

1. Submodule Selection

For the network structure, our experiments are carried
out on different numbers of invertible blocks and models,
where the Dense Block or Residual Block are employed as
invertible block sub-modules.

Table 1. Ablation experiments for the network architecture.

Inv sub-module Container Revealed
Blocks Image Image

16 Dense Block 39.48/.968 37.26/.964
8 Dense Block 38.81/.965 38.65/.976
4 Dense Block 35.27/.965 40.28/.980

16 Residual Block 36.62/.968 38.46/.972
8 Residual Block 37.44/.953 39.17/.973
4 Residual Block 36.50/.956 40.23/.977

co
nv

co
nv

co
nv

co
nv

co
nvInput

H*W*C_in Le
ak

yR
eL

u

Le
ak

yR
eL

u

Le
ak

yR
eL

u

Le
ak

yR
eL

u

Output

H*W*C_out

Figure 1. The architecture of our Dense Block sub-model.

∗indicates equal contribution.

Table 2. Sub-module architectures.
Conv (input channel, output channel, size, stride, activation)
Conv2D (Cin, 32, 3, 1, LeakyReLU)
Conv2D (Cin + 32, 32, 3, 1, LeakyReLU)
Conv2D (Cin + 32× 2 , 32, 3, 1, LeakyReLU)
Conv2D (Cin + 32× 3, 32, 3, 1, LeakyReLU)
Conv2D (Cin + 32× 4, Cout, 3, 1, None)

Let’s take hiding an image as an example to discuss the
network architecture by setting all the loss weights to 1. In
Tab. 1, as the number of invertible blocks increases, the
PSNR of the generated container image increases, but the
PSNR of the revealed image decreases gradually. Easy to
follow that increasing the loss weight of the container im-
age, i.e. αco, could improve the quality of the container im-
age. Therefore, we choose to use 4 invertible blocks when
hiding an image. It can also be observed from Tab. 1 that
choosing Dense Block or Residual Block as sub-modules
has slight influence on the results. We then adopt a 5-layer
Dense Block (Tab. 2, Fig. 1) as our sub-module. For the
sub-module φ(·), Cin is the number of feature channels in
the hidden branch b2, and Cout is the number of feature
channels in the host branch b1. Here Cout is always set to 3.
For sub-modules ρ(·) and η(·), the values of Cin and Cout

are equal to Cout and Cin of the sub-module φ(·), respec-
tively.

2. Loss Function Adjustment

Table 3. Ablation experiments for loss weights.

(αco, αhi) Container Image Revealed Image
(1, 1) 38.81/.965 38.65/.976
(2, 1) 40.11/.974 35.49/.950
(1, 2) 31.78/.949 40.76/.980
(2, 2) 36.44/.963 36.13/.965

Ablation experiments are also designed for different loss
function weights. In addition to improving the container

1

image quality by adjusting the loss weights with 4 invert-
ible blocks (as described in the paper), we also perform the
experiments when using 8 invertible blocks. However, as
shown in Tab. 3, increasing the loss weight αco can indeed
improve the PSNR of the container image, but the quality
of revealed hidden image will significantly decline, making
it difficult to make a good trade-off. Therefore, it is reason-
able for us to use 4 invertible blocks when hiding an image.

3. Parameters Setting
The detailed parameters setting of ours models are

shown in Tab. 4.

Table 4. The detailed parameters setting.

The number of hidden images 1 2 3 4 5
Channels of b1 3 3 3 3 3
Channels of b2 3 6 9 12 15

Inv Blocks 4 8 16 16 16
αco 32 64 64 64 64

4. Comparisons
Here we add some visual comparisons. Fig. 2 shows that

the container images and the revealed hidden images cre-
ated by our method and [1]’s method are visually plausi-
ble. However, our results are with less reconstruction er-
rors. What’s more, as shown in Fig. 3, the method in [1]
is prone to color bias in some cases when hiding two im-
ages, while both the container image and revealed hidden
images generated from our method are with higher quality.
Fig. 4, Fig. 5 and Fig. 6 show some examples where we hide
3 ∼ 5 images, respectively.

References
[1] Shumeet Baluja. Hiding images within images. IEEE Trans.

Pattern Anal. Mach. Intell., 2019. 1, 2, 3, 4

Ho
st

Errors (mag.x50)Original Generated Errors (mag.x50)Original Generated
Hi

dd
en

(b)

(d)

(a)

(c)

Ho
st

Hi
dd

en
Ho

st
Hi

dd
en

Ho
st

Hi
dd

en

(a) Original (b) [1] (c) Ours (d) [1] (e) Ours
Figure 2. Visual comparison for hiding and revealing an image.

Ho
st

Container
Errors (mag.x50)

Hi
dd

en
-1

Hi
dd

en
-2

Original Generated

Errors (mag.x50)Original Generated

(a)

(b)

(c)

(d)

Ho
st

Hi
dd

en
-1

Hi
dd

en
-2

Ho
st

Hi
dd

en
-1

Hi
dd

en
-2

Ho
st

Hi
dd

en
-1

Hi
dd

en
-2

(a) Original (b) [1] (c) Ours (d) [1] (e) Ours
Figure 3. Visual comparison for hiding and revealing two images.

O
rig

in
al

O
ur

s
Er

ro
rs

(a)

(b)

O
rig

in
al

O
ur

s
Er

ro
rs

Figure 4. Two examples for hiding and revealing three images, with a blue border on the host images and an orange border on the hidden
images. In each example, the top row is the original images and the middle row is our generated results, while the third row is the ×50
magnified errors between them.

O
rig

in
al

O
ur

s
Er

ro
rs

(a)

(b)

O
rig

in
al

O
ur

s
Er

ro
rs

Figure 5. Two examples for hiding and revealing four images, with a blue border on the host images and an orange border on the hidden
images. In each example, the top row is the original images and the middle row is our generated results, while the third row is the ×50
magnified errors between them.

O
rig

in
al

O
ur

s
Er

ro
rs

(a)

(b)

O
rig

in
al

O
ur

s
Er

ro
rs

Figure 6. Two examples for hiding and revealing five images, with a blue border on the host images and an orange border on the hidden
images. In each example, the top row is the original images and the middle row is our generated results, while the third row is the ×50
magnified errors between them.

