Supplementary Material: MASA-SR: Matching Acceleration and Spatial Adaptation for Reference-Based Image Super-Resolution

Liying Lu^{1*} Wenbo Li^{1*} Xin Tao² Jiangbo Lu³ Jiaya Jia^{1,3} ¹ The Chinese University of Hong Kong ² Kuaishou ³ SmartMore

{lylu,wenboli,leojia}@cse.cuhk.edu.hk, jiangsutx@gmail.com, jiangbo@smartmore.com

1. Details of Ablation Study

In the ablation study of block sizes and dilation rates, it should be noted that if the size of the LR block is $m \times n$, then the basic size of the Ref \downarrow block is set to $\frac{mH_{Ref\downarrow}}{H_{LR}} \times \frac{nW_{Ref\downarrow}}{W_{LR}}$, where $H_{Ref\downarrow}$, $W_{Ref\downarrow}$ and H_{LR} , W_{LR} are the height and width of the Ref \downarrow feature and the LR feature, respectively. We multiply the basic size of different scale factors in the ablation study, and use the scale factors to denote the Ref \downarrow block size in Fig. 5(b) of body text and in the following descriptions.

Influence of LR block sizes. The FLOPS in Fig. 5(a) is computed by taking as input a 192×192 LR image and a 768×768 Ref image. The Ref↓ block size is 1.5 and the dilation is 1.

Influence of Ref \downarrow block sizes. The FLOPS in Fig. 5(b) is computed on a 128 \times 128 LR image and a 512 \times 512 Ref image. The LR block size is 8 and the dilation is 1.

Influence of dilation rates. The FLOPS in Fig. 5(c) is computed on a 120×120 LR image and a 480×480 Ref image. The LR block size is 12 and the Ref block size is 1.5.

2. More Visual Results

We show more visual results of the proposed MASA and other state-of-the-art methods, including RCAN [6], HAN [2], ESRGAN [4], SRNTT [7] and TTSR [5]. RCAN and HAN are SISR methods that have achieved the best performance on PSNR, and ESRGAN is a GAN-based SISR method that is considered state-of-the-art in visual quality. SRNTT [7] and TTSR [5] are state-of-the-art RefSR methods. The visual comparison on CUFED5 [7] testing set are shown in Fig. 1 and Fig. 2, and the comparison on Sun80 [3] and Urban100 [1] are shown in Fig. 3 and Fig. 4, respecitively.

It can be observed that our MASA can restore more regular structures and generate photo-realistic details.

References

- Jia-Bin Huang, Abhishek Singh, and Narendra Ahuja. Single image super-resolution from transformed self-exemplars. In *CVPR*, pages 5197–5206, 2015.
- [2] Ben Niu, Weilei Wen, Wenqi Ren, Xiangde Zhang, Lianping Yang, Shuzhen Wang, Kaihao Zhang, Xiaochun Cao, and Haifeng Shen. Single image super-resolution via a holistic attention network. In *ECCV*, pages 191–207. Springer, 2020.
- [3] Libin Sun and James Hays. Super-resolution from internetscale scene matching. In 2012 IEEE International Conference on Computational Photography (ICCP), pages 1–12. IEEE, 2012.
- [4] Xintao Wang, Ke Yu, Shixiang Wu, Jinjin Gu, Yihao Liu, Chao Dong, Yu Qiao, and Chen Change Loy. Esrgan: Enhanced super-resolution generative adversarial networks. In *ECCV*, pages 0–0, 2018.
- [5] Fuzhi Yang, Huan Yang, Jianlong Fu, Hongtao Lu, and Baining Guo. Learning texture transformer network for image super-resolution. In *CVPR*, pages 5791–5800, 2020.
- [6] Yulun Zhang, Kunpeng Li, Kai Li, Lichen Wang, Bineng Zhong, and Yun Fu. Image super-resolution using very deep residual channel attention networks. In *ECCV*, pages 286– 301, 2018.
- [7] Zhifei Zhang, Zhaowen Wang, Zhe Lin, and Hairong Qi. Image super-resolution by neural texture transfer. In *CVPR*, pages 7982–7991, 2019.

^{*}Equal contribution

Input LR	RCAN	HAN	ESRGAN
Reference	SRNTT	TTSR	MASA (Ours)

Figure 1: Visual comparison among different SR methods on the CUFED5 [7] testing set.

Input LR	RCAN	HAN	ESRGAN
Reference	SRNTT	TTSR	MASA (Ours)
	West Print West Print	West Point West Point	West Proint

Figure 2: Visual comparison among different SR methods on the CUFED5 [7] testing set.

Input LR	RCAN	HAN	ESRGAN
Reference	SRNTT	TTSR	MASA (Ours)

Figure 3: Visual comparison among different SR methods on the Sun80 [3] dataset.

Input LR	RCAN	HAN	ESRGAN
Reference	SRNTT	TTSR	MASA (Ours)

Figure 4: Visual comparison among different SR methods on the Urban100 [1] dataset.