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1. Details of Ablation Study

In the ablation study of block sizes and dilation rates, it
should be noted that if the size of the LR block is m×n, then
the basic size of the Ref↓ block is set to mHRef↓

HLR
× nWRef↓

WLR
,

where HRef↓, WRef↓ and HLR, WLR are the height and
width of the Ref↓ feature and the LR feature, respectively.
We multiply the basic size of different scale factors in the
ablation study, and use the scale factors to denote the Ref↓
block size in Fig. 5(b) of body text and in the following de-
scriptions.
Influence of LR block sizes. The FLOPS in Fig. 5(a) is
computed by taking as input a 192 × 192 LR image and a
768 × 768 Ref image. The Ref↓ block size is 1.5 and the
dilation is 1.
Influence of Ref↓ block sizes. The FLOPS in Fig. 5(b) is
computed on a 128 × 128 LR image and a 512 × 512 Ref
image. The LR block size is 8 and the dilation is 1.
Influence of dilation rates. The FLOPS in Fig. 5(c) is com-
puted on a 120×120 LR image and a 480×480 Ref image.
The LR block size is 12 and the Ref↓ block size is 1.5.

2. More Visual Results

We show more visual results of the proposed MASA
and other state-of-the-art methods, including RCAN [6],
HAN [2], ESRGAN [4], SRNTT [7] and TTSR [5]. RCAN
and HAN are SISR methods that have achieved the best per-
formance on PSNR, and ESRGAN is a GAN-based SISR
method that is considered state-of-the-art in visual qual-
ity. SRNTT [7] and TTSR [5] are state-of-the-art RefSR
methods. The visual comparison on CUFED5 [7] testing
set are shown in Fig. 1 and Fig. 2, and the comparison on
Sun80 [3] and Urban100 [1] are shown in Fig. 3 and Fig. 4,
respecitively.

It can be observed that our MASA can restore more reg-
ular structures and generate photo-realistic details.

*Equal contribution
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Figure 1: Visual comparison among different SR methods on the CUFED5 [7] testing set.
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Figure 2: Visual comparison among different SR methods on the CUFED5 [7] testing set.
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Figure 3: Visual comparison among different SR methods on the Sun80 [3] dataset.
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Figure 4: Visual comparison among different SR methods on the Urban100 [1] dataset.


