
Taskology: Utilizing Task Relations at Scale (Supplemental Material)

Yao Lu1 2, Sören Pirk1,2, Jan Dlabal2, Anthony Brohan1,2, Ankita Pasad3∗,
Zhao Chen4, Vincent Casser4, Anelia Angelova1,2, Ariel Gordon1,2

1Robotics at Google, 2Google Research, 3Toyota Technological Institute at Chicago, 4Waymo LLC
{yaolug, pirk, dlabal, brohan}@google.com, ankitap@ttic.edu,

{zhaoch, casser}@waymo.com, {anelia, gariel}@google.com

1. Scene depth, segmentation and ego-motion
1.1. Modules and Interfaces

The interfaces of the three modules, depth, motion and
semantic segmentation, are defined below:

Motion Prediction Network: Given two consecutive
RGB frames, I1(i, j) and I2(i, j), of width w (0 ≤ j < w)
and height h (0 ≤ i < h), the motion prediction network
predicts the following quantities:

• δt1→2(i, j): For every pixel (i, j), δt1→2(i, j) esti-
mates the movement of the point visible at the pixel
(i, j) of frame 1, relative to the scene, which occurred
between frame 1 and frame 2.

• T1→2: The translation vector of the camera between
frame 2 and frame 1.

• R1→2: The rotation matrix of the camera between
frame 2 and frame 1.

Similarly, the network predicts δt2→1(i, j), T2→1, and
R2→1, which are defined as above, with (1) and (2)
swapped.

Depth Prediction Network: Given an RGB frame,
I(i, j), the depth prediction network predicts a depth map,
z(i, j), for every pixel (i, j).

Semantic Segmentation Network: Given an RGB
frame, I(i, j), the semantic segmentation network predicts
a logit map lc(i, j) for each class c. For each pixel (i, j),
the class is given by c(i, j) = argmaxc lc(i, j).

1.2. Next frame warping

To construct the consistency losses for these tasks, as
shown in the main paper, we need to derive the locations of
each pixel from the first frame onto the next frame, which

∗Work done while at Robotics at Google

is also referred to as image warping from frame 1 to frame
2. We start with defining m(i, j) to be the movable mask:

m(i, j) =

{
1 c(i, j) ∈M
0 otherwise

(1)

M is the collection of all classes that represent movable
objects. These are detailed below. For each pixel (i, j),
m(i, j) equals 1 if the pixel belongs to one of the movable
object classes, and 0 otherwise.

Given two adjacent video frames, 1 and 2, a depth map of
frame 1 z1(i, j), the camera matrix K, and a pixel position
in homogeneous coordinates

p(i, j) =

ji
1

 , (2)

one can write the shift in p resulting from the rotation and a
translation that occured between the two frames as:

z′1(i, j)p
′
1(i, j) = KR1→2K

−1z1(i, j)p1(i, j)
+ K(m1(i, j)δt1→2(i, j) + T1→2),(3)

where p′1 and z′1 are respectively the new homogeneous co-
ordinates of the pixel and the new depth, projected onto
frame 2, and K is the camera matrix. The above equation
consists of the scene depth, as obtained by rigid motion of
the scene and the additional changes obtained from the mo-
tions of the individually movable objects. Note that the mo-
tion mask is only applied to regions of potentially movable
objects m1(i, j), determined by the semantic segmentation
model. The movable mask m1(i, j) (of frame 1) restricts
motion of objects relative to the scene to occur only at pix-
els that belong to movable objects.

1.3. Evaluation Protocol

In our experiment COCO served as the dedicated dataset
for segmentation, and Cityscapes served as the unlabeled
mediator dataset. Since the two datasets have different sets
of labels, we had to create a mapping between the two. The
mapping is shown in Table 1.

Label ID
Class Ours COCO 2017 Cityscapes
person/rider 1 1 24/25
bicycle 2 2 33
car 3 3 26
motorcycle 4 4 32
traffic lights 5 10 19
bus 6 6 28
truck 7 8 27
others 8 other labels other labels

Table 1: Mapping between Cityscapes label IDs, COCO
labels IDs, and the label IDs we defined for this experiment.

Only labels that represent movable objects are of interest
for our experiment. We therefore restricted our label set
to 7 classes, that are in the intersection of Cityscapes and
COCO and represent movable objects. All other labels were
mapped to label ID 8. When evaluating the segmentation on
Cityscapes, we mapped the Cityscapes groundtruth labels
and the COCO-trained model predictions to these 8 labels.

1.4. Hardware configuration

The three models in this experiment had different com-
putational costs. Table 2 shows the duration of a training
step for each of the three models on 8 NVIDIA p100 GPU,
for a batch of 32. Placing the segmentation model on a TPU
node reduced its training step time to be closer to the other
modules. This way the convergence was not gated on the
Segmentation model. Being able to train each module on a
different hardware configuration is one of the strengths of
our method.

Model Hardware Step time
Depth GPU 0.81s
Motion GPU 0.83s
Segmentation GPU 2.18s
Segmentation TPU 1.42s

Table 2: Time per training step in milliseconds for each of
the three modules in Sec. 3.2.1 in the main paper, on various
hardware platforms. The batch size is 32 in all cases. GPU
denotes 8 NVIDIA p100 GPU, and TPU denotes a Google
Cloud TPU v2-8 unit.

1.5. Failure cases

Consistency improves correctness, but does not guaran-
tee it. A set of predictions can be consistent with one an-
other, but not correct. A simple example is a misdetection of

(a) Failure example 1, frame 1

(b) Failure example 1, frame 2

Figure 1: Failure example 1: Segmentation network fails to
segment out a white car on the left edge on two consecutive
frames.

(a) Failure example 2, frame 1

(b) Failure example 2, frame 2

Figure 2: Failure example 2: Segmentation network fails to
segment out some cars at the end of the road on two consec-
utive frames.

a static object. If the segmentation network fails to segment
out the same object on two consecutive frames, the con-
sistency loss will not penalize this failure. Fig.1 and Fig.2
shows some examples of failure cases that consistency was
unable to fix.

2. Depth and Surface Normals

To compute a consistency loss for the collective training
of depth and normal prediction models we compute surface
normals from the predicted depth map, and penalize their
deviation from the predicted normal map, closely following

the method in Ref. [1]. We first convert the the depth map to
a 3D point cloud, using the inverse of the intrinsics matrix:

~rij ≡

xi,jyi,j
zi,j

 = zi,j ·

1/fx 0 −x0/fx
0 1/fy −y0/fy
0 0 1

ji
1

(4)

where fx and fy denote the focal length, and x0 and y0
the principal point offset, i and j are the pixel coordinates
along the height and the width of the image respectively,
and zij is the depth map evaluated at the pixel coordinates
(i, j). ~rij is a point in 3D space, in the camera coordinates,
corresponding to pixel (i, j).

We then compute the spatial derivatives of the depth
map:

(∂x,~r)i,j = ~ri,j+1 − ~ri,j−1
(∂y, ~r)i,j = ~ri+1,j − ~ri−1,j

(5)

To exclude depth discontinuities, we invalidate pixels where
the spatial gradient of the depth relative to the depth itself is
greater than a certain threshold β. To this end, we define a
validity mask vi,j :

Vi,j = (Vx)i,j · (Vy)i,j , (6)

where

(Vx)i,j =

{
1 (∂x, z)i,j < zi,j · β
0 otherwise

(Vy)i,j =

{
1 (∂y, z)i,j < zi,j · β
0 otherwise

(7)

The validity mask Vi,j is used to zero out the spatial gra-
dients at depth discontinuities:

(∂x, ~r′)i,j = (∂x,~r)i,j · Vi,j
(∂y, ~r′)i,j = (∂y, ~r)i,j · Vi,j

(8)

We then compute the average spatial derivatives over a
window of size N ×N pixels around each pixel (i, j):

(∂x,~r)i,j =
1

N2

N∑
i′,j

(∂x, ~r′)i−N
2 +i′,j−N

2 +j′

(∂y, ~r)i,j =
1

N2

N∑
i′,j

(∂y, ~r′)i−N
2 +i′,j−N

2 +j′

(9)

Note that we normalize by N2, whereas the proper nor-
malization would be by

∑
i′,j′ Vi−N

2 +i′,j−N
2 +j′ . However

since the direction of the surface normal is insensitive to
the norms of (∂x,~r)i,j and (∂y, ~r)i,j , as opposed to their
directions, this is immaterial.

Figure 3: 3D Detection and flow estimation joint training:
we use parts of Waymo Open Dataset [3] to supervise the
training of a single-frame 3D detector (M1) and multi-frame
flow estimator (M2) and apply a motion consistency loss on
a set of unlabeled data.

To obtain the surface normal, we calculate the cross
product of (∂x,~r)i,j and (∂y, ~r)i,j ,

(~nd)i,j = (∂x,~r)i,j × (∂y, ~r)i,j (10)

and then normalize it, to obtain the normalized surface nor-
mal:

(n̂d)i,j = (~nd)i,j/ ‖(~nd)i,j‖ (11)

The consistency is then computed as

Lconsistency = cosine distance(n̂d, n̂p), (12)

where n̂d is the computed surface normals from the inferred
depth as described in this section, and n̂p is the normal map
predicted from the normal prediction network.

3. 3D Object Detection in Point Clouds in Time
To add more detail, we visualize the joint training of

3D Object detection and flow in Figure 3. Two consecu-
tive Point Clouds are considered PC1 and PC2, which are
processed by a Point Pillar embedding layer [2]. The first
module (M1) provides the 3D detections D1 and D2 for the
two point clouds, respectively, whereas the second module
(M2) computes the flow T1→ 2, which is limited to boxes
only. Each of these modules applies its respective supervi-
sion, whereas the consistency loss imposes that the detected
boxes from the static point cloud should match the detec-
tions from the previous static point cloud as transformed by
the predicted flow (Figure 3).

References
[1] S. Holzer, R. B. Rusu, M. Dixon, S. Gedikli, and N. Navab.

Adaptive neighborhood selection for real-time surface normal
estimation from organized point cloud data using integral im-
ages. In 2012 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems, pages 2684–2689, 2012. 3

[2] Alex H Lang, Sourabh Vora, Holger Caesar, Lubing Zhou,
Jiong Yang, and Oscar Beijbom. Pointpillars: Fast encoders
for object detection from point clouds. In CVPR, pages
12697–12705, 2019. 3

[3] Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aurelien
Chouard, Vijaysai Patnaik, Paul Tsui, James Guo, Yin Zhou,
Yuning Chai, Benjamin Caine, Vijay Vasudevan, Wei Han,
Jiquan Ngiam, Hang Zhao, Aleksei Timofeev, Scott Et-
tinger, Maxim Krivokon, Amy Gao, Aditya Joshi, Yu Zhang,
Jonathon Shlens, Zhifeng Chen, and Dragomir Anguelov.
Scalability in perception for autonomous driving: Waymo
open dataset. In CVPR, 2020. 3

