
Conditional Bures Metric for Domain Adaptation
(Supplementary Material)

You-Wei Luo1 Chuan-Xian Ren1,2∗

1School of Mathematics, Sun Yat-Sen University, China
2Pazhou Lab, Guangzhou, China

luoyw28@mail2.sysu.edu.cn, rchuanx@mail.sysu.edu.cn

Abstract

This supplementary material contains the proofs of theorems and some details on the experiment setting: 1) we present the
discussions on the proposed method; 2) we show some details on the proposed conditional distribution matching network;
3) we present an additional comparison experiment; 4) we introduce some basic definition and conclusions on the bounded
operators and Hilbert spaces as a preliminary of proofs; 5) we present the proofs of all theorems and propositions in the
paper.

S.1. Discussions
How CKB helps knowledge transfer?

As we aim at the classification-oriented transfer, where the task knowledge in PX|Y needs to be considered during the
transfer of X , the aligned conditional distributions (P s

X|Y = P t
X|Y ) are essential to the successful generalization of

source predictor. To achieve this, we develop a rigorously defined conditional discrepancy metric (i.e., CKB) which has
not been explored in transfer learning. Theoretically, recent advancement [37] shows the target generalization error is
bounded by the discrepancy between the optimal classifiers on two domains. Since the error rate of source classifier
will be small on the target domain with aligned conditional distribution PX|Y , the CKB-based conditional alignment is
equivalent to minimize the discrepancy between the classifiers.

Relation to other metrics.
Connection: MMD, kernel Bures, and CKB are all kernel embedding metrics. Besides, CKB metric is essentially the
minimized transport cost of the class-wise kernel OT.
Difference: CKB metric is directly built on the conditional distributions, while MMD and kernel Bures are the marginal
distribution embedding metrics. Compared with the class-wise MMD [38] and OT, CKB is not only well-defined with
infinite conditions (i.e., Y is continuous), but also estimates the conditional distribution with data from all conditions. As
a closed-form solution, CKB also avoids the burdens of optimization in class-wise OT. Note the class-wise computation
strategy estimates the conditional discrepancy separately and will be inefficient when Y is continuous or |Y| is large.
Therefore, CKB is more effective when there are more categories.

About label shift and limitations.
Label shift investigates the shifting joint distribution PXY via PXY = PY PX|Y . Current label shift and GAN-like
methods [11, 22, 28, 35] usually give an implicit approximate solution or make a strong assumption on PX|Y . These
methods commonly assume that there exists a transformation or generator F (·) : X → Z s.t. P s

Z|Y = P t
Z|Y . However,

neither the practical sufficient condition for the existence of F (·) nor its explicit modeling are explored. To overcome
this bottleneck, our work builds an explicit rule for F (·) with the conditional discrepancy metric CKB, which helps
the classification knowledge transfer by minimizing the CKB distance between domains. Further, the MMD on PY is
applied to align the shifting PXY , which is actually less flexible and is the main limitation.

∗Corresponding Author.
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S.2. Experimental Details
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Figure 1. Network architecture of the proposed conditional distribu-
tion matching network. “FC” means the fully connected layer and
its following elements respectively represent the dimensions after the
projection, batch normalization and activation.

We implement the proposed conditional distribution
matching network in PyTorch [1] platform. The frame-
work of the conditional distribution matching network
is presented in Figure 1. For ImageCLEF-DA and
Office-Home datasets, we use ResNet-50 [2] as the back-
bone DNNs in Figure 1. Follow the standard protocol,
AlexNet [3] and modified LeNet [4] are adopted as the
backbones in Office10 and Digits datasets. We use Adam
Optimizer (lr = 0.0002, β1 = 0.9, β2 = 0.999) with
batch size of 40 for model training. Based on the trial-
and-error approach, the hyper-parameters λ1 and λ2 are
set as 5e-2 and 1e0, respectively. The “Bures” and “Ker-
nel Bures” in Ablation experiment mean that we replace
the LCKB in CKB model with Eq. (6) and Eq. (7), re-
spectively. We report their best results via the same grid
search as shown in the paper. For all the datasets, we
randomly repeat the experiments for 10 times. All ex-
periments are performed on an Ubuntu 18.04 operating
system PC with an Intel Core i7-6950X 3.00GHz CPU PC, 64G RAM and an NVIDIA TITAN Xp GPU.

S.3. Experiment on Refurbished Office-31

Refurbished Office-31 [5] is recently released for extending the major problems of the Office-31 dataset. Specifically,
Refurbished Office-31 replaces a total of 834 on the Amazon domain in the original Office-31 dataset, while the sample size
of Amazon domain is still 2,817. For the DSLR and Webcam domains, they are kept the same as in the original Office-31
dataset. We denote the Amazon, DSLR and Webcam domains in Refurbished Office-31 as Aref, W, D, respectively. The
results in Table 1 show that the proposed methods are competitive with other SOTA UDA methods. Especially, the proposed
methods achieve the highest accuracies on tasks D→W and W→D. Since there are less ground-truth labels in tasks D→Aref
and W→Aref, the empirical estimation of CKB metric may be less effective and the classification accuracies are lower.
Defining a more accurate pseudo-labeling strategy will further boost the CKB-based adaptation models.

Table 1. Accuracies (%) on Refurbished Office-31 (ResNet-50).

Image-CLEF-DA Aref → D Aref →W D→ Aref D→W W→ Aref W→ D Mean
Source [2] 79.2 ± 0.6 76.8 ± 1.0 73.5 ± 1.2 96.3 ± 0.2 74.1 ± 0.5 99.1 ± 0.3 83.2

RSDA-DANN [6] 90.9 ± 1.3 91.8 ± 0.5 87.3 ± 0.6 98.8 ± 0.2 90.5 ± 0.9 99.9 ± 0.1 93.2
RSDA-MSTN [6] 93.2 ± 1.0 92.2 ± 0.3 91.7 ± 0.9 99.1 ± 0.2 93.0 ± 0.6 100.0 ± 0.0 94.9

SymNet [7] 92.4 ± 0.4 91.0 ± 0.2 90.6 ± 0.4 98.0 ± 0.1 89.2 ± 0.4 99.8 ± 0.0 93.5
CAN [8] 94.4 ± 0.3 92.8 ± 0.5 92.3 ± 0.8 98.5 ± 0.2 90.9 ± 1.0 99.7 ± 0.2 94.8

CKB 93.0 ± 1.0 92.3 ± 0.3 88.9 ± 1.1 99.3 ± 0.3 86.2 ± 0.9 100.0 ± 0.0 93.3
CKB+MMD 92.8 ± 1.2 91.8 ± 0.4 88.9 ± 0.9 99.3 ± 0.2 86.0 ± 1.1 100.0 ± 0.0 93.1

S.4. Proofs

S.4.1. Preliminary: Operators on Hilbert Space

Before the proofs, we briefly review the operators on Hilbert space. Let T be a operator on Hilbert space H, the adjoint
of T is denoted by T ∗ and T is called self-adjoint if T ∗ = T . The following lemma proves that there exists a unique square
root for any positive operator.

Lemma S.1 ([9], Theorem VI.9, square root lemma) Let T be a positive operator onH. Then there is a unique
√
T onH

such that
√
T is positive, self-adjoint and (

√
T )2 = T .
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With the square root, we define the absolute value of T as |T | =
√
T ∗T . Let {ϕn}∞n=1 be an orthonormal basis in H. Note

that the absolute value of a self-adjoint operator T is the operator itself, i.e., |T | =
√
T ∗T =

√
T 2 = T . For any positive

operator T , its trace is defined by tr(T ) =
∑

n 〈ϕn, Tϕn〉. An operator T is called trace class and Hilbert-Schmidt class
if and only if its trace-norm ‖T‖1 = tr(

√
T ∗T ) = tr(|T |) (which is also known as nuclear norm ‖ · ‖∗ in vector space)

and Hilbert-Schmidt-norm ‖T‖2 =
√

tr(T ∗T ) are finite, respectively. The sets of all trace class and Hilbert-Schmidt class
operators are denoted by B1 and B2, respectively. We denote T1 ≥ T2 if T1 − T2 is positive.

Lemma S.2 ([9], Theorem VI.20, VI.22) For any T1, T2 ∈ S+(H),
(a) B1 is a Banach space with norm ‖ · ‖1.
(b) B2 is a Hilbert space with inner product 〈T1, T2〉2 = tr(T ∗1 T2).
(c) ‖ · ‖2 ≤ ‖ · ‖1 and ‖T1T2‖1 ≤ ‖T1‖2‖T2‖2.
(d) ‖T1‖1 = ‖T ∗1 ‖1 and ‖T1‖2 = ‖T ∗1 ‖2.

The above lemma shows that B1 and B2 are vector space, and T1T2 ∈ B1 if T1, T2 ∈ B2. The next lemma shows that
the distance between the square roots of any two positive operators is bounded by the square distance between the operators.
This lemma will be used to guarantee the convergence of the square root of conditional covariance operator in the proof of
Theorem 4.

Lemma S.3 ([10], Lemma 4.1) Let T1 and T2 be positive operators on Hilbert spaceH. Then

‖
√
T1 −

√
T2‖22 ≤ ‖T1 − T2‖1.

Based on the above lemmas, we derive some properties of the operators on S+(H) which is the set of all positive, self-
adjoint and trace class operator on H. The following properties will be used in the proofs of Proposition 1 and Theorem
4.

Corollary S.1 Let T1, T2 ∈ S+(H), then
(a) ‖T1‖1 = tr(T1).
(b) ‖T1‖1 = ‖

√
T1‖22 which means

√
T1 ∈ B2.

(c) ‖
√
T1
√
T2‖1 ≤ ‖

√
T1‖2‖

√
T2‖2 which means

√
T1
√
T2 ∈ B1.

Proof (a) As T1 is self-adjoint, ‖T1‖1 = tr(|T1|) = tr(T1).
(b) From (a) and Lemma S.1 (c) we know that

√
T1 is also positive and self-adjoint. Then we have

‖T1‖1 = tr(T1) = tr(
√
T1
√
T1) = tr(

√
T1
∗√

T1) = ‖
√
T1‖22.

Since T1 is trace class (i.e., T1 ∈ B1), then ‖
√
T1‖22 = ‖T1‖1 <∞ and

√
T1 ∈ B2.

(c) This can be proved from (b) and Lemma S.2 (c).

S.4.2. Proof of Theorem 1

Theorem 1 Let (X ,BX ) be the locally compact and Hausdorff measurable space and the reproducing kernel k be c0-
universal. Assuming that (φ(X), ψ(Y )) is a Gaussian random variable inHX⊕HY . For any P s

X|Y , P
t
X|Y ∈ Prs(X|Y),

we have
dCKB(Rs

XX|Y ,R
t
XX|Y ) = 0 =⇒ P s

X|Y = P t
X|Y .

We first introduce an important property called 3-splitting.

Definition S.1 (3-splitting property) A probability measure PX ∈ Pr(X ) satisfies the 3-splitting property if there exist
three disjoint subsets Ω1,Ω2,Ω3 ⊂ X , which satisfy PX(Ω1), PX(Ω2), PX(Ω3) > 0 and Ω1 ∪ Ω2 ∪ Ω3 = X .

The 3-splitting property is vital for the injectiveness of PX → RXX . Specifically, the 3-splitting property guarantees the
unique covariance embedding RXX for a certain probability measure PX , i.e., P s

X 6= P t
X =⇒ Rs

XX 6= Rt
XX . For more

detailed discussions of the 3-splitting property, please refer to literature [11]. With the 3-splitting property, we present a
lemma.
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Lemma S.4 ([11], Theorem 5) Let the measurable space (Z,BZ) be locally compact and Hausdorff. Let k be a c0-universal
reproducing kernel. Then, the embedding PZ → RZZ ,∀PZ ∈ Pr(Z) is injective.

Now we begin the proof of Theorem 1.

Proof As dCKB(Rs
XX|Y ,R

t
XX|Y ) = 0 and the CKB metric defines a metric on S+(HX ), we have Rs

XX|Y = Rt
XX|Y .

Since (φ(X), ψ(Y )) is a Gaussian random variable in HX ⊕ HY , then the conditional covariance RXX|Y=y on RKHS is
independent of the condition Y = y [12], i.e.,

RXX|Y=y1
= RXX|Y=y2

,∀y1, y2,∈ Y. (S.1)

Further, we show the connection between the conditional covariance operator RXX|Y and conditional covariance RXX|Y=y

with fixed condition y. We first review the kernel mean embedding operator CX|Y = RXY R−1Y Y [12, 13], which satisfies

µX|Y=y = EX|Y=y [φ(X)|Y = y] = µX + CX|Y (ψ(y)− µY ), RXY = CX|Y RY Y .

Note ∀yi ∈ Y , RXX|Y can be rewritten as

RXX|Y = VX [φ(X)]−RXY R−1Y Y RY X

= VX [φ(X)]− CX|Y RY Y C∗X|Y

= VX [φ(X)]− EY

[
CX|Y (ψ(y)− µy)⊗ (ψ(y)− µy)C∗X|Y

]
= VX [φ(X)]− EY

[
(µX|Y=y − µX)⊗ (µX|Y=y − µX)

]
= VX [φ(X)]− VY

[
µX|Y=y

]
= VX [φ(X)]− VY

[
EX|Y [φ(X)|Y ]

]
= EY

[
VX|Y [φ(X)|Y ]

]
(S.2)

= EY

[
RXX|Y

]
= RXX|Y=yi

, (S.3)

where Eq. (S.3) is concluded from Eq. (S.1) and Eq. (S.2) is obtained from the Eve’s law which is written as

V [φ(X)] = E [V [φ(X)|Y ]] + V [E [φ(X)|Y ]] .

The above equations show that RXX|Y is exactly the expectation of RXX|Y=y over Y , and RXX|Y = RXX|Y=yi
, ∀yi ∈ Y .

Now, for every fixed y, denote Z = X ×{y}. Since the finite space {y} is always compact and the product of locally compact
spaces is locally compact, the measure space Z is locally compact. Note Z is also Hausdorff, since for any two distinct
points x1, x2 ∈ X , there exist neighbourhoods of each which are disjoint and this result also holds for (x1, y), (x2, y) ∈ Z .
Then it can be concluded from Theorem S.4 that PX|Y=y → RXX|Y=y is injective. Recall that Rs

XX|Y = Rt
XX|Y , thus, we

have Rs
XX|Y=y = Rt

XX|Y=y from Eq. (S.3) and P s
X|Y=y = P t

X|Y=y for all y ∈ Y , i.e., P s
X|Y = P t

X|Y .

S.4.3. Proof of Proposition 1

Proposition 1 The CKB metric dCKB(·, ·) defines a metric on S+(HX ).

Proof Let T1, T2, T3 ∈ S+(HX ). We first rewrite the CKB metric as

d2CKB(T1, T2) = tr
(
T1 + T2 − 2

√√
T1T2

√
T1

)
= ‖T1‖1 + ‖T2‖1 − 2tr

(√√
T1
√
T2
√
T2
√
T1

)
(S.4)

= ‖T1‖1 + ‖T2‖1 − 2tr
(√

(
√
T2
√
T1)∗

√
T2
√
T1

)
= ‖T1‖1 + ‖T2‖1 − 2‖

√
T2
√
T1‖1, (S.5)
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where Eq. (S.4) holds from Corollary S.1 (a). It can be deduced from Corollary S.1 (c) that ‖
√
T2
√
T1‖1 ≤ ∞ and

d2CKB(·, ·) ≤ ∞. With the reformulation Eq. (S.5), we derive an important inequality for the CKB metric as follows.

d2CKB(T1, T2) = ‖T1‖1 + ‖T2‖1 − 2‖
√
T2
√
T1‖1

= ‖
√
T1‖22 + ‖

√
T1‖22 − 2‖

√
T2
√
T1‖1 (S.6)

≥ ‖
√
T1‖22 + ‖

√
T1‖22 − 2‖

√
T2‖2‖

√
T1‖2 (S.7)

=
(
‖
√
T1‖2 − ‖

√
T2‖2

)2
, (S.8)

where Eq. (S.6) holds from Corollary S.1 (b) and Eq. (S.7) from Corollary S.1 (c). The above inequality shows that
dCKB(T1, T2) ≥

∣∣‖√T1‖2 − ‖√T2‖2∣∣, where
∣∣‖√T1‖2 − ‖√T2‖2∣∣ is the absolute value of the real number ‖

√
T1‖2 −

‖
√
T2‖2. Now we begin to prove the metric properties.

(i) As dCKB(T1, T2) ≥
∣∣‖√T1‖2 − ‖√T2‖2∣∣ ≥ 0, the CKB metric is nonnegative.

(ii) On the one hand, if T1 = T2, then it can be deduced from Eq. (S.5) that

d2CKB(T1, T2) = ‖T1‖1 + ‖T2‖1 − 2‖
√
T2
√
T1‖1 = ‖T1‖1 + ‖T1‖1 − 2‖

√
T1
√
T1‖1 = 0.

On the other hand, without loss of generality, assuming that T1 ≥ T2. If dCKB(T1, T2) = 0, then

dCKB(T1, T2) = 0
Eq. (S.8)

=====⇒
∣∣∣‖√T1‖2 − ‖√T2‖2∣∣∣ = 0

=====⇒ |tr(T1 − T2)| = 0

=====⇒ ‖T1 − T2‖1 = 0

=====⇒ T1 = T2,

where tr(T1−T2) = ‖T1−T2‖1 = 0 as the sum of self-adjoint operators is still self-adjoint. Thus we have dCKB(T1, T2) = 0
if and only if T1 = T2.
(iii) The following equations prove the symmetry property of the CKB metric.

d2CKB(T1, T2) = ‖T1‖1 + ‖T2‖1 − 2‖
√
T2
√
T1‖1

= ‖T1‖1 + ‖T2‖1 − 2‖ (
√
T2
√
T1)∗‖1 (S.9)

= ‖T2‖1 + ‖T1‖1 − 2‖
√
T1
√
T2‖1

= d2CKB(T2, T1),

where Eq.(S.9) holds from Lemma S.1 (d). Since dCKB ≥ 0, dCKB(T1, T2) = dCKB(T2, T1).
(iv) The following equations prove the triangle inequality of the CKB metric.

dCKB(T1, T2) + dCKB(T2, T3) ≥
∣∣∣‖√T1‖2 − ‖√T2‖2∣∣∣+

∣∣∣‖√T2‖2 − ‖√T3‖2∣∣∣
≥

∣∣∣‖√T1‖2 − ‖√T2‖2 + ‖
√
T2‖2 − ‖

√
T3‖2

∣∣∣
=

∣∣∣‖√T1‖2 − ‖√T3‖2∣∣∣
= dCKB(T1, T3).

The proof is completed by combing (i)-(iv).

S.4.4. Proof of Proposition 2

Proposition 2 If kY is positive definite kernel, then Bs and Bt are positive definite for any ε > 0.
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Proof To simplify the notation, we consider the following matrix:

B = In −
1

nε

[
GY −GY (GY + εnIn)

−1
GY

]
.

If kY is positive-definite kernel, then the kernel matrix KY Y is positive definite. Recall that GY = HnKY Y Hn, so GY is
a real positive semi-definite matrix whose Eigenvalue Decomposition (EVD) GY = UDUT always exists. Note that U is
orthogonal and D is a diagonal matrix with non-negative entries. Then we can rewrite B as

B =In −
1

nε

[
UDUT −UDUT

(
UDUT + εnIn

)−1
UDUT

]
=In −

1

nε

[
UDUT −UDUT

(
U(D + εnIn)UT

)−1
UDUT

]
=In −

1

nε

[
UDUT −UD (D + εnIn)

−1
DUT

]
=In −

1

nε
U
[
D−D (D + εnIn)

−1
D
]

UT

=U

[
In −

1

nε

(
D−D (D + εnIn)

−1
D
)]

UT

=UD′UT

where D′ = In− 1
nε

(
D−D (D + εnIn)

−1
D
)

. It is clear that D′ is a diagonal matrix and UD′UT is the EVD of B. Let

d′i and di ≥ 0 be the i-th diagonal entries of D′ and D, respectively. From the definition of D′, we have

d′i = 1− 1

nε

(
di −

d2i
di + nε

)
= 1− di

di + nε
=

nε

di + nε
> 0,

which means B has entirely positive eigenvalues. Especially, we have

B = εnU(D + εnIn)−1UT = εn (GY + εnIn)
−1
.

Thus, we have prove that B is positive definite.

S.4.5. Proof of Theorem 2

Theorem 2 The empirical estimation of the CKB metric is computed as

d̂2CKB(R̂s
XX|Y , R̂

t
XX|Y ) = εtr

[
Gs

X (εnIn + Gs
Y )
−1
]

+ εtr
[
Gt

X

(
εmIm + Gt

Y

)−1]
− 2√

nm

∥∥∥(HmCt)
T

Kts
XX (HnCs)

∥∥∥
∗
,

where Cs/t satisfies the decomposition Bs/t = Cs/tC
T
s/t and ‖ · ‖∗ is the nuclear norm.

To prove Theorem 2, we use the following lemma to reformulate the inverse of the implicit feature map matrix.

Lemma S.5 (Sherman-Morrison-Woodbury [14]) Suppose A ∈ Rn×n is nonsingular and U,V ∈ Rn×k. If (Ik +
VTA−1U) is nonsingular, then(

A + UVT
)−1

= A−1 −A−1U
(
Ik + VTA−1U

)−1
VTA−1.

Now we begin the proof of Theorem 2.
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Proof The trace of conditional covariance operators Rs/t
XX|Y have been investigated in [15] and can be written as

tr (R̂s
XX|Y ) = tr

[
Gs

X (εnIn + Gs
Y )
−1
]
, tr (R̂t

XX|Y ) = tr
[
Gt

X

(
εnIm + Gt

Y

)−1]
. (S.10)

In terms of the third term in conditional kernel Bures metric, we first reformulate Rs
XX|Y (Rt

XX|Y is the same).

R̂s
XX|Y =

1

n
ΦsH

2
nΦT

s −
1

n2
ΦsH

2
nΨT

s

(
R̂s

Y Y + εI
)−1

ΨsH
2
nΦT

s

=
1

n
ΦsHn

[
In −

1

n
HnΨT

s

(
R̂s

Y Y + εI
)−1

ΨsHn

]
HnΦT

s .
(S.11)

For
(
R̂Y Y + εI

)−1
, we apply the Sherman-Morrison-Woodbury formula as

(
R̂s

Y Y + εI
)−1

= n
(
εnI + ΨsHnHnΨT

s

)−1
= n

[
1

εn
I− 1

ε2n2
ΨsHn

(
In +

1

εn
HnΨT

s ΨsHn

)−1
HnΨT

s

]

=
1

ε

[
I−ΨsHn (εnIn + Gs

Y )
−1

HnΨT
s

]
.

By substituting this inverse to Eq. (S.11), then we have

R̂s
XX|Y =

1

n
ΦsHn

[
In −

1

nε

(
Gs

Y −Gs
Y (Gs

Y + εnIn)
−1

Gs
Y

)]
HnΦT

s

=
1

n
ΦsHnBsHnΦT

s .

Similarly, one can show that R̂t
XX|Y = 1

mΦtHmBtHmΦT
t .

Based on above reformulations, we consider the third term tr(R̂st
XX|Y ). Let Cs/t be any matrix satisfy the decomposition

Bs/t = Cs/tC
T
s/t. Denote Ĥn , HnCs and Ĥm , HmCt, then

tr
(
R̂st

XX|Y

)
= tr

√√ 1

n
ΦsHnBsHnΦT

s

(
1

m
ΦtHmBtHmΦT

t

)√
1

n
ΦsHnBsHnΦT

s


=

1√
nm

√√
ΦsĤnĤT

nΦT
s

(
ΦtĤmĤT

mΦT
t

)√
ΦsĤnĤT

nΦT
s

=
1√
nm

√(√
ΦsĤnĤT

nΦT
s ΦtĤm

)(√
ΦsĤnĤT

nΦT
s ΦtĤm

)T

=
1√
nm

√(√
ΦsĤnĤT

nΦT
s ΦtĤm

)T (√
ΦsĤnĤT

nΦT
s ΦtĤm

)
=

1√
nm

√
ĤT

mΦT
t

(
ΦsĤnĤT

nΦT
s

)
ΦtĤm

=
1√
nm

√(
ĤT

mKts
XXĤn

)(
ĤT

mKts
XXĤn

)T
=

1√
nm

∥∥∥(HmCt)
T

Kts
XX (HnCs)

∥∥∥
∗
.

(S.12)

Combining Eq. (S.10) and (S.12), the empirical estimation of conditional kernel Bures metric is proved.
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S.4.6. Proof of Theorem 3

Before the proof, we first review some basic definitions used in asymptotic statistics [16]. Let d(·, ·) be a distance function,
and Zn a sequence of random variable. Zn is said to converge to Z in probability (which is denoted by Zn

P−→ Z) if ∀ε > 0,

P (d(Zn, Z) > ε)→ 0 (n→∞).

This convergence is equivalent to d(Zn, Z) → 0. Now we introduce the stochastic o symbols. The notation oP (1) means
that a sequence of random vectors converges to 0 in probability, i.e.,

Zn = oP (1) ⇐⇒ Zn
P−→ 0.

With the notation oP (·), the convergence can be generalized as

Zn = oP (Sn) ⇐⇒ Zn = YnSn and Yn
P−→ 0,

where Sn is the so-called rate.

Lemma S.6 ([16], Theorem 2.3, Continuous mapping) Let g be continuous at every point of a setC such that P(Z ∈ C) =

1. If Zn
P−→ Z, then g(Zn)

P−→ g(Z).

Lemma S.7 ([15], Proposition 7) Let the regularization parameter ε in RXX|Y be a series related to n, i.e., εn. Assuming
εn satisfies that εn → 0 and εn

√
n→∞ (n→∞), then we have

|tr(R̂(n)
XX|Y )− tr(RXX|Y )| = oP

(
1

εn
√
n

)
as n→∞.

Lemma S.6 shows that the continuous mapping is guaranteed to preserve the convergence of a sequence. Lemma S.7
show the convergence of empirical conditional covariance estimation. We will use these lemmas to prove the convergence
the square root of the conditional covariance operator.

Theorem 3 Let the regularization parameter ε in RXX|Y be a series related to n′, i.e., εn′ . Assuming εn′ satisfies that
εn′ → 0 and εn′

√
n′ →∞ (n′ →∞), then we have

|D̂(n′)
CKB −DCKB| → 0 (n′ →∞)

in probability with rate ( 1
ε′n
√
n′ )

1
2 .

Proof To simplify the notation, let Rs(n)

and Rt(m)

be the conditional covariance operator drawn i.i.d. from distribution
P s
XY and P t

XY with sample size n and m, respectively. Recall that n′ = min{n,m}, we first split |D̂(n′)
CKB −DCKB| into three

terms, i.e.,

|D̂(n′)
CKB −DCKB| ≤ |tr(Rs(n)

)− tr(Rs)|+ |tr(Rt(m)

)− tr(Rt)|+ 2|tr(Rst(n,m)

)− tr(Rst)|. (S.13)

According to Lemma S.7, the first two terms in Eq. (S.13) are guaranteed to converge to 0 as n′ →∞ with rate oP
(

1
εn′
√
n′

)
.

Now we focus on the third term |tr(Rst(n,m)

)− tr(Rst)|, which can be reformulated as
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|tr(Rst(n,m)

)− tr(Rst)|

=
∣∣∣∥∥∥√Rt(m)

√
Rs(n)

∥∥∥
1
−
∥∥∥√Rt

√
Rs
∥∥∥
1

∣∣∣
≤

∥∥∥√Rt(m)
√

Rs(n) −
√

Rt
√

Rs
∥∥∥
1

=
∥∥∥√Rt(m)

√
Rs(n) −

√
Rt
√

Rs(n) +
√

Rt
√

Rs(n) −
√

Rt
√

Rs
∥∥∥
1

≤
∥∥∥√Rt(m)

√
Rs(n) −

√
Rt
√

Rs(n)

∥∥∥
1

+
∥∥∥√Rt

√
Rs(n) −

√
Rt
√

Rs
∥∥∥
1

≤
∥∥∥√Rt(m) −

√
Rt
∥∥∥
2

∥∥∥√Rs(n)

∥∥∥
2

+
∥∥∥√Rt

∥∥∥
2

∥∥∥√Rs(n) −
√

Rs
∥∥∥
2

≤
√∥∥Rt(m) −Rt

∥∥
1

∥∥∥√Rs(n)

∥∥∥
2

+
∥∥∥√Rt

∥∥∥
2

√∥∥Rs(n) −Rs
∥∥
1
, (S.14)

where Eq. (S.14) holds from Lemma S.3. Since the conditional covariance operators are trace class,
∥∥∥√Rs(n)

∥∥∥
2

and
∥∥∥√Rt

∥∥∥
2

are finite from Corollary S.1 (b). Therefore, the estimation error is bounded by
√∥∥Rt(m) −Rt

∥∥
1

and√∥∥Rs(n) −Rs
∥∥
1
. For

√∥∥Rt(m) −Rt
∥∥
1
, since Rt(m) −Rt is self-adjoint, we have

dt
(m)

,
∥∥∥Rt(m)

−Rt
∥∥∥
1

= |tr(Rt(m)

−Rt)| = |tr(Rt(m)

)− tr(Rt)|.

Lemma S.7 shows that dt
(m)

= oP

(
1

εm
√
m

)
as n → ∞, which means εm

√
mdt

(m) P−→ 0. Denote the estimation error

sequence Zm = εm
√
mdt

(m)

, Z = 0 and the set C = [0,∞), then P(Z ∈ C) = 1 and g(·) =
√
· is continuous on C since

Zn, Z ∈ C. Then from Lemma S.6, we have

g(Zn) =
√
Zn =

(√
εm
√
m

)√
dt(m) P−→ 0,

which means
√
dt(m) =

√∥∥Rt(m) −Rt
∥∥
1

= oP

(
1√

εm
√
m

)
as m → ∞. Similarly, we have

√∥∥Rs(n) −Rs
∥∥
1

=

oP

(
1√

εn
√
n

)
as n→∞. Finally, the estimation error of the CKB metric is

|D̂(n′)
CKB −DCKB| = oP

(
1

εn′
√
n′

)
+ oP

(
1√

εm
√
m

)
+ oP

(
1√
εn
√
n

)
= oP

 1√
ε′n
√
n′


as n′ →∞.
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