
Supplementary Material for
Generalizing Face Forgery Detection with High-frequency Features

1. Overview

In this supplementary material, we present more imple-
mentation details and experimental results, including

• Detailed network architecture (see Sec. 2).

• Detailed implementation settings (see Sec. 3).

• More experimental results (see Sec. 4), including addi-
tional ablation studies on FF++ and comparisons with
other state-of-the-art methods.

2. The Network Architecture

2.1. Details of the proposed modules

SRM kernels. Following [17], we adopt three commonly
used kernels from the original SRM bands [8], and the
weights are presented in Fig. 1.
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Figure 1: The adopted three SRM kernels.

SRM convolution blocks. We design two SRM-based
convolution blocks, i.e., the SRM Block (see Fig. 2) and
the Separable SRM Block (see Fig. 3).

The SRM Block is a conventional convolution block, ex-
cept that its weight is fixed as the presented three kernels.
We apply it to the raw RGB image, and the output size is
the same as the input image. To capture the high-frequency
patterns at different scales and compose more abundant in-
formation, we devise the Separable SRM Block to process
each feature map separately. We use 1 × 1 convolution to
recover the channel dimension. Following [15], we employ
a truncated linear unit as the activation function.

Attention-related modules. Fig. 4 shows the dual cross-
modality attention block in detail. The residual guided spa-
tial attention block and the channel attention based fusion
block are presented in Fig. 5 and Fig. 6, respectively.
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Figure 2: The SRM Block. A hard-
tanh layer is used for non-linear acti-
vation of the high-frequency features.
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Figure 3: The Separable SRM Block.
We extract high-frequency features
for each channel.
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Figure 4: The Dual Cross-Modality Attention Block. The
attention map is calculated based on the spatial correlation
between the two modalities. Features from one modality are
strengthened by those from the other modality.

2.2. Detailed architecture of the proposed model

Fig. 7 illustrates the proposed two-stream model in de-
tail. We employ two modified Xception models as the back-
bone to process the RGB image and the high-frequency
noises extracted by the SRM Block separately.

In the entry flow, the initial noise features are strength-
ened by high-frequency features from two separable SRM
convolution blocks at different scales, which constitute
the multi-scale high-frequency feature extraction module.
Meanwhile, low-level features in the RGB stream are cali-
brated under the guidance of the residual guided spatial at-
tention, which helps focus more on the forgery traces.

In the middle flow, we place two DCMA blocks to model
the correlation and interaction between the regular RGB
modality and the novel high-frequency modality.
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Figure 5: The Residual Guided Attention Block. Attention
map calculated from high-frequency features is exploited to
guide the feature extraction in the RGB modality.
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Figure 6: The Fusion Block. The concatenated high-level
features are forwarded to a Channel Attention Block for fur-
ther calibration.

In the exit flow, we fuse the features from the two modal-
ities in an attention-based manner. Specifically, we first
stack features in the depth direction and then apply the
channel-wise attention to get the output features. Note that
we place a dropout layer before the final classification layer
to reduce overfitting.

3. Implementation Details
Following FF++ [13], we extract 270 frames from each

training video to construct the training set. The extracted
and aligned face images are resized to 256 × 256 and then
normalized to [−1, 1], with no data augmentation applied.
We implement the model in PyTorch [5]. Adam optimizer
is set with the learning rate of 0.0002 and the weight de-
cay rate of 0.0005. We set the batch size to 32 in both the
training and testing phases. The training loss converges af-
ter around 120k iterations. We compute the AM-Softmax
loss with cosine margin under the default hyper-parameter
setting (γ = 0.0, m = 0.5, s = 30, t = 1.0). Two Nvidia
Tesla M40 GPUs are used in each experiment.

Table 1: More ablation studies on FF++. Results colored in
gray indicate the within-database performance.

Training Method Testing AUC

DF F2F FS NT

DF

RGB 0.993 0.736 0.485 0.736
SRM 0.992 0.701 0.445 0.759

Two-stream Fusion (Fusion) 0.993 0.758 0.472 0.761
Fusion + RSA 0.992 0.753 0.454 0.778

Fusion + RSA + DCMA 0.992 0.760 0.466 0.766
Fusion + RSA + DCMA + Multi-scale 0.992 0.764 0.497 0.814

FS

RGB 0.664 0.889 0.994 0.713
SRM 0.627 0.901 0.995 0.878

Two-stream Fusion (Fusion) 0.670 0.961 0.995 0.905
Fusion + RSA 0.687 0.977 0.995 0.918

Fusion + RSA + DCMA 0.704 0.984 0.995 0.947
Fusion + RSA + DCMA + Multi-scale 0.685 0.993 0.995 0.980

NT

RGB 0.800 0.813 0.731 0.991
SRM 0.785 0.986 0.991 0.995

Two-stream Fusion (Fusion) 0.811 0.986 0.989 0.995
Fusion + RSA 0.825 0.988 0.991 0.994

Fusion + RSA + DCMA 0.840 0.991 0.992 0.994
Fusion + RSA + DCMA + Multi-scale 0.894 0.995 0.993 0.994

Table 2: Comparison with methods employing novel net-
works on CelebDF.

Model Training Set Testing AUC on CelebDF

Two-stream [16] SwapMe [16] 0.557
Meso4 [7] private DF [7] 0.526

MesoInception4 [7] private DF [7] 0.496

Ours FF++/DF 0.692
Ours FF++/FS 0.722

Table 3: Comparison with methods employing novel net-
works on F2F (LQ).

Model Training/Testing Set Testing Acc

Two-stream [16]

F2F (LQ)

0.868
Meso4 [7] 0.832

MesoInception4 [7] 0.813
Capsule [12] 0.812

Ours 0.897

4. Additional Experiments

4.1. More ablation studies

For the ablation study in Sec. 5.2 of the main text, we
use F2F of FF++ [13] as the training set and other databases
as the testing sets. Here we present more ablation study
results using the other three databases in FF++ as the train-
ing set separately. As shown in Tab. 1, the entire model
assembling all the proposed modules achieves the best per-
formance consistently under these settings.
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Figure 7: The architecture of the proposed model. We employ two modified Xception models as the backbone. On one hand,
the residual features are enhanced by high-frequency features extracted by two separable SRM convolution blocks at different
scales. On the other hand, the regular spatial features are calibrated under the guidance of the residual guided attention. We
adopt two DCMA blocks to model the correlation and interaction between the two modalities in the middle flow. In the end,
the class label is predicted based on the fused features.

Table 4: Cross-database evaluation from FF++ to others. The metrics are AUC, AP (Average Precision), and EER (Equal
Error Rate).

Training Model DFD [2] DFDC [1] CelebDF [11] DF1.0 [9]

AUC ↑ AP ↑ EER ↓ AUC ↑ AP ↑ EER ↓ AUC ↑ AP ↑ EER ↓ AUC ↑ AP ↑ EER ↓

FF++ [13]
Xception [13] 0.831 0.867 0.228 0.679 0.716 0.380 0.594 0.715 0.460 0.698 0.807 0.329

Face X-ray [10] 0.856 0.866 0.240 0.700 0.737 0.35 0 0.742 0.823 0.336 0.723 0.819 0.302
Ours 0.919 0.930 0.175 0.797 0.819 0.299 0.794 0.861 0.276 0.738 0.816 0.300

4.2. Comparison with methods employing novel net-
work designs

In Sec. 5.4 of the main paper, we compare our
method with multi-task learning methods, high-frequency-
based methods, and data generation-based methods. Here
we further compare against methods that design ef-
fective network architectures, i.e., Two-stream [16],
Meso4/MesoInception4 [7], and Capsule [12]. Two-stream
utilizes a patch-based triplet network and leverage steganal-
ysis features as a second stream. Meso4 and MesoIncep-
tion4 are two light-weight CNN models that perform anal-
ysis at a mesoscopic level. Capsule introduces a capsule
network to detect tampered faces.

Considering that Two-stream is trained on faces forged

by the Swapme App [6] and two Meso-nets are trained on a
collected Deepfakes [3] dataset, we train our model on the
DF and FS [4] datasets in FF++, separately. We compare
these models on the CelebDF database [11]. As presented
in Tab. 2, our method achieves much better performance in
this cross-database setting.

In addition, we evaluate these models on the low-quality
F2F [14] set. As shown in Tab. 3, our model shows better
robustness in detecting the heavily compressed forgeries.

4.3. More statistics of the cross-database evaluation

In Sec. 5.3 in the main script, we conduct a cross-
database evaluation on four large-scale databases. Here we
present more statistics of this experiment in Tab. 4
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Table 5: Cross-database evaluation with HQ-BI data. (Re-
sults of Face X-ray* are from the original paper.)

Training Set Model Testing Set (AUC)

DFD DFDC CelebDF

raw-BI Face X-ray* 0.935 0.712 0.748
raw-BI & raw-FF++ 0.954 0.809 0.806

HQ-BI Face X-ray 0.727 0.715 0.824
Ours 0.838 0.788 0.813

HQ-BI & HQ-FF++ Face X-ray 0.908 0.783 0.833
Ours 0.951 0.822 0.840

4.4. Comparison with Face X-ray on the BI dataset

Since real-world face forgeries have a limited quality,
we run the released code1 and generate a BI dataset with
real faces from HQ (lightly compressed) FF++, namely HQ-
BI. The comparison is shown in Tab. 5. Note that we also
present the reported results of Face X-ray [10] (* marked)
that is trained in raw (no compression) images, namely raw-
BI. Both two models are promoted with HQ-BI data, and the
proposed model achieves superior performance.
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