
Supplemental Material for Normalized Avatar Synthesis Using StyleGAN and

Perceptual Refinement

Huiwen Luo Koki Nagano Han-Wei Kung Qingguo Xu

Zejian Wang Lingyu Wei Liwen Hu Hao Li

Pinscreen

Appendix I. Additional Comparisons
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Figure 1: Additional comparisons. The first row shows the

input images and the second row our results. The remaining

rows are the reconstructed 3D faces obtained by [5, 3, 7, 2,

4, 6], respectively.

In Fig. 1, we compare our method with several recent

state-of-the-art single view face reconstruction approaches.

Thies et al. [6] extend the seminal work of Blanz and Vet-

ter [1] with facial expression blendshapes and iteratively

optimize for shape, texture, and lighting condition by min-

imizing energy terms based on facial landmark and pixel

color constraints. We visualize the avatars with and with-

out the facial expressions of the corresponding input photo.

Neutralizing facial expressions is straightforward by setting

all the blendshape coefficients to 0. We notice that the lin-

ear morphable face model is unable to recover features such

as facial hair, as well as high-frequency geometry and ap-

pearance details. As a result, the face renderings often lack

the likeness of the original subject and often fall within

the so called “uncanny valley”. Genova et al. [4] pre-

dict identity coefficients of linear 3DMM using a deep neu-

ral network and Deng et al. [2] predict the lights and face

poses simultaneously using additionally linear 3DMM co-

efficients. Their models are still restricted to the linear sub-

space which has limited capabilities for representing facial

details. Gecer et al. [3] introduce an unsupervised training

approach to regress linear 3DMM coefficients for geome-

try and adopt a Generative Adversarial Network model for

generating nonlinear texture. Tran et al. [7] present an ap-

proach to learn additional proxies as means to avoid strong

regularization, which efficiently captures high level details

for geometry and texture with a simple decoder architecture.

They do not separate identity and expressions in the train-

ing. Lee et al. [5] demonstrate the latest work for gener-

ating 3D face models from a single input photograph using

non-linear 3DMMs and an uncertainty-aware mesh decoder.

The resulting 3D faces are very faithful to the input image,

but the lighting and expressions are baked into the texture

and mesh. As a result, neither Lee et al. [5] nor the above

non-linear 3DMM techniques produce normalized results

as shown in our paper. Notice that the results in Fig. 1 from

row 3 to row 7 were taken directly from the paper of [5],

and the renderings may have slight inconsistencies.

Appendix II. Additional Evaluations

In Sec. 3.1, we adopt a two step training method by first

training G and then freezing G in order to compute the code

inversion and to train R. Fig. 2 shows that the latent codes

can be effectively found out with our choice of loss func-

tion in Eq. 2. Specifically, while pixel loss and adversarial
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Figure 2: Algorithmic choice justification on the loss func-

tion for GAN-inversion. From top to bottom: Ground truth

geometry and texture; Reconstruction results optimized by

pixel loss and adversarial loss; Reconstruction results with

perceptual loss in addition.

loss cannot preserve the overall similarity, adding the per-

ceptual loss improves the high-level appearance in the ren-

dering views.

Figure 3: Illustration of latent vector interpolation. The four

input 3D avatars are shown at the corners, while all the in-

between interpolations are based on bi-linear interpolated

weights.

Face Interpolation. In Fig. 3, we show interpolation re-

sults of multiple 3D avatars. The four input avatars are

shown at the corners. All the interpolation results are

obtained via bi-linearly interpolation of the embedding w

computed from the four images. As shown in the results, re-

alistic, plausible, and artifact free avatar assets can be gen-

erated using our method, which can be useful for a wide

range of avatar manipulation and synthesis tasks.

(a) (b) (c) (d)

Figure 4: Visual comparison illustrating the effects of losses

in the perceptual refinement step, where the full model leads

to better results. From left to right: (a) input image; (b)

refinement result with identity loss and w regularization; (c)

refinement result with perceptual loss and w regularization;

(d) refinement result with all three losses.

Optimization Loss. Fig. 4 shows the benefit of each loss

term in Lrefine for the perceptual refinement. Combining

identity loss, perceptual loss, and w regularization allows

us to generate clean assets, where the resulting subject pre-

serves the likeness of the subject in the original input photo,

but at the same time, ensures consistent and detailed assets

with normalized lighting and neutral expressions.
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Figure 5: Consistent reconstructions of albedo texture under

varying extreme illuminations.

Illumination Consistency. Fig. 5 demonstrates consis-

tent face reconstructions of albedo textures from varying il-

luminations conditions. In this experiment we move around

a light with different extreme colors around the subjects and

demonstrate how a consistent 3D avatar with a nearly iden-

tical dark skin tone is correctly reconstructed for each input

photo.

Expression Consistency. We demonstrate how consistent

faces are reconstructed from input images with different ex-

pressions in Fig. 6. In particular, our method digitizes con-

sistent 3D avatars with neutral expressions despite a wide

range of diverse and extreme facial expressions of the same

person as shown in the first row and the third row. While

some amount of the input expressions are reflected in the

normalized results, the overall neutralization is significantly
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Figure 6: Consistent reconstructions of 3D avatars from im-

ages with different expressions.

superior than existing techniques, especially for extreme in-

put facial expressions.
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Figure 7: Consistent reconstructions under different poses.

Pose Consistency. Fig. 7 shows consistent reconstruc-

tions from varying head poses. For side views, our method

can still generate highly consistent textures and geometries

despite non-visible face regions in the input image.

Appendix III. Additional Results

To demonstrate the robustness of the our technique, we

provide 156 additional examples with a wider range of ex-

tremely challenging input photographs in Fig. 8, Fig. 9,

Fig. 10, and Fig. 11. These figures illustrate input pictures,

successful normalized 3D face reconstructions, as well as

renderings using HDRI-based lighting environments. Our

results include diverse ethnicity, both genders, and varying

age groups, ranging from children to old people. We also

showcase a wide range of complex lighting conditions, styl-

ized photographs, black and white portraits, drawings and

paintings, facial occlusions, as well as a wide range of ex-

treme head poses and facial expressions. Notice that we also

show several results of the same person, but reconstructed

from entirely different input images.
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Figure 8: Batch 1 additional results of normalized 3D avatars from a single input image. None of these subjects have been

used in training for our networks.
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Figure 9: Batch 2 additional results of normalized 3D avatars from a single input image. None of these subjects have been

used in training for our networks.
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Figure 10: Batch 3 additional results of normalized 3D avatars from a single input image. None of these subjects have been

used in training for our networks.
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Figure 11: Batch 4 additional results of normalized 3D avatars from a single input image. None of these subjects have been

used in training for our networks.


