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In this supplementary material, Section 1 reports an ad-
ditional experiment to study how our self-supervised pre-
trained models benefit to the supervised training under dif-
ferent amounts of training data. Section 2 discusses how
to make use of pillar motion to facilitate various down-
stream tasks. Section 3 describes more details on the differ-
ences between our pillar motion prediction and the existing
scene flow estimation. Section 4 shows the impact of the
smoothness loss term to the overall performance. Section 5
demonstrates the robustness of our approach to the impor-
tant hyper-parameters. Section 6 presents more qualitative
results to illustrate the effect of the proposed probabilistic
motion masking design.

1. Self-Supervision for Supervised Training

Our self-supervised learning can be utilized as unsuper-
vised pre-training to improve supervised training. In this
section, we investigate the benefits of our self-supervised
pre-trained models to supervised training under different
amounts of training data with the derived motion annota-
tions. Specifically, we randomly sample 20%, 40%, 60%
and 80% of the entire training data. We compare the mod-
els trained from scratch against the ones initialized from
the self-supervised pre-trained models. Here we summarize
the important findings from the comparisons reported in Ta-
ble 4. (1) It is observed that the self-supervised pre-trained
models consistently and significantly outperform the ran-
domly initialized models across all cases. Such improve-
ments are more remarkable under fewer training data and
for the fast speed group. (2) Our self-supervised model
fine-tuned with a small amount of training data (i.e., 20%)
is able to achieve comparable performance compared to the
randomly initialized model trained with a large amount of
training data (i.e., 80%). This suggests that the model with
self-supervised pre-training requires much fewer annota-
tions and is therefore more labeling efficient. (3) We find
that the self-supervised pre-trained models converge faster,
taking about 60% of the training iterations as the models
initialized from scratch.
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Figure 6. Examples of perceiving the rare objects: wheelchair and
dog, which are not seen in the training of point cloud based 3D
object detection. We show the results (indicated by the two red
arrows) of our self-supervised model, which can correctly estimate
the class-agnostic pillar motion.

2. Pillar Motion for Downstream Tasks
Our pillar motion can be potentially applied to enhance

a variety of downstream modules. For perception, we show
one advantage of our model to deal with the unknown in-
stances that are not seen during the training of 3D object de-
tection, as illustrated in Figure 6. For tracking, it is empiri-
cally demonstrated in [17] that integrating the low-level mo-
tion information improves the object tracking performance.
As for planning, knowing the moving state of an agent is
particularly helpful to tackle rare objects although the spe-
cific classes are unknown.

3. Comparison with Scene Flow Estimation
In addition to the comparisons described in the intro-

duction and related work of the paper, here we elaborate
more on the differences between our work and the previ-
ous methods for point cloud based scene flow estimation.
First, scene flow aims to estimate the point correspondences
between two point clouds, while our goal is to predict the
motion of each pillar or the displacement vector that indi-
cates the future position of each pillar. Second, although
apart from the synthetic data (e.g., FlyingThings3D), the
existing scene flow methods also experiment with the self-
driving data (e.g., KITTI Scene Flow), they do not use the



Amount Self-Supervised Static Speed ≤ 5m/s Speed > 5m/s
Mean Median Mean Median Mean Median

0% 3 0.1620 0.0010 0.6972 0.1758 3.5504 2.0844

20% 7 0.0473 0.0001 0.4635 0.1400 2.0946 1.1676
3 0.0394 0.0001 0.2970 0.1309 1.028 0.6055

40% 7 0.0459 0.0001 0.3712 0.1385 1.7060 0.8950
3 0.0329 0.0000 0.2813 0.1280 0.8923 0.5287

60% 7 0.0412 0.0001 0.3082 0.1338 1.0912 0.6830
3 0.0352 0.0000 0.2801 0.1297 0.8499 0.5148

80% 7 0.0347 0.0001 0.2930 0.1322 0.9824 0.6110
3 0.0247 0.0000 0.2301 0.0933 0.7788 0.4700

Table 4. Benefits of our self-supervised pre-training under different amounts of training data. 3: the models are first self-supervised
pre-trained and then supervised fine-tuned with the annotations of nuScenes. 7: the models are randomly initialized from scratch and
supervised trained with the annotations of nuScenes. We report the mean and median errors on the three speed groups. Note: no fine-
tuning is performed under 0%, which is provided as a baseline reference.

Figure 7. Comparison of the predicted pillar motion. We show the ground truth motion field in the first row, the results estimated by our
full model in the second row, and the predictions by the model without using probabilistic motion masking in the third row. Each column
demonstrates one scene. We remove the ground points for better visualization.

raw LiDAR scans. Instead, they combine 2D optical flow
with depth map and convert them into 3D scene flow. Com-
pared with the point clouds collected by LiDAR, the con-
verted point clouds are much more dense. However, for the
raw point clouds used by self-driving vehicles, this does not
hold in most cases, making the task harder, in particular for
directly doing self-supervision. Third, the prior scene flow
methods usually take hundreds of milliseconds when oper-
ating on a partial point cloud that is even largely subsam-
pled. Our approach can achieve pillar motion prediction of
a complete point cloud in real-time.

4. Ablation Study on Smoothness

Removing the smoothness term in Eq. (8) slightly in-
creases the mean errors, e.g., 0.0058 (Speed ≤ 5m/s),
0.0041 (Speed > 5m/s), and 0.0042 (Moving). Overall, the
smoothness loss in pillar motion is not as significant as in
optical flow. This is due to the fact that the form of pillar
motion representation already implies the smoothness prior
as each pillar shares the same motion in 0.25m× 0.25m. In
addition, the motion prediction of empty pillars that occupy
a large portion of areas can be directly masked out.



5. Hyper-Parameters
We set the hyper-parameters to roughly balance the dif-

ferent loss terms: λconsist = λsmooth = 1 and λregular = 0.01.
We also experiment with λregular = 0.02, 0.03, 0.04, 0.05.
Under the five values of λregular, the standard deviations of
mean errors of the three speed groups are very low: 0.0004,
0.0010 and 0.0070, indicating the robustness of our model
to the hyper-parameter setting.

6. More Qualitative Results
Next we provide more qualitative results to reveal the ef-

ficacy of the proposed probabilistic motion masking. In Fig-
ure 7, we compare the predicted pillar motion fields by our
full model and the model without using probabilistic mo-
tion masking. As shown in this figure, we present 6 scenes
with diverse traffic scenarios and multiple zoom-in scales.
In comparison to our full model, the model not using prob-
abilistic motion masking tends to produce more false posi-
tive motion predictions at the background regions, such as
building, wall and vegetation. This comparison further val-
idates the effect of probabilistic motion masking to reduce
the noise incurred by the moving ego-vehicle to the pillars
of the background regions.


