
Learning Normal Dynamics in Videos with Meta Prototype Network

Supplemental Materials

Hui Lv1, Chen Chen2, Zhen Cui1*, Chunyan Xu1, Yong Li1, Jian Yang1

2PCALab, Nanjing University of Science and Technology, 2University of North Carolina at Charlotte

{hubrthui, zhen.cui, cyx, yong.li, csjyang}@njust.edu.cn, chen.chen@uncc.edu

1. Visualization of anomaly score curves in test

videos

In Fig. 1, we visualize some examples of anomaly score

curves on test videos. The K-shot models are meta-trained

on Shanghai Tech dataset and applied on test videos of

Ped2 [1], Ped1 [1] and Avenue [2] in (c) and (d) columns,

compared with models trained and tested on the same

datasets mentioned above. As we can see, the performance

of the scene-adapted models with meta-training (K = 10)

is superior than the baseline (K = 0) without the adaption

process. For example, the anomaly scores (K = 0) among

the normal temporal region in the 1st row (c) column (be-

fore red box of ground-truth anomaly) retain a high value

before adaption, and the scores drop after adaption as in (d)

column. Similar circumstances can be found in other rows.

In addition, the few-shot models almost catch up with

models trained in the unsupervised setting in the second,

fourth and sixth rows. However, there are still room for im-

proving our algorithm, such as enhancing the consistence of

anomaly scores from continuous anomalous frames and am-

plifying the score margins between normal and anomalous

frames.

2. Meta-training Pseudo Code

For further details of the meta-training, we summarize

the entire learning algorithm in Algorithm 1.
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Algorithm 1: Meta-training for few-shot scene-

adaptive anomaly detection algorithm

Input: Pre-trained AE model Eη(x), Randomly

initialized θ0 and α, training dataset D

Output: θ∗
0

and α∗

while not converged do

Initialize gradθ0 , gradα to zero vector;

for each eposide in a mini-batch do

Sample a training example j, k ∼ p(D);
yj

′ = fθ(Eη(xj)) ;

θ̂0 = θ0 − α⊙∇θt

0
L(yj , yj

′; θ0) ;

yk
′ = f

θ̂
(Eη(xj)) ;

gradθ0
= gradθ0

+∇θ0L(yk, yk
′);

gradα = gradα +∇αL(yk, yk
′);

end

Update θ0: θ0 = Optimizer(θ0, gradθ0
);

Update α: α = Optimizer(α, gradα);

end
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Figure 1: Visualization of some examples of test videos. The groups of pictures in different columns denote (a) anomalous

frame, (b) anomaly scores under the unsupervised setting, (c) anomaly scores under the few-shot setting (K = 0), (d) anomaly

scores under the few-shot setting (K = 10). The green curves denote the evolution of anomaly scores. The orange and red

boxes represent the ground-truth anomalous regions in the frames and temporal ground-truth anomaly locations of videos,

respectively. In each figure of the anomaly score curve, the x-axis denotes the frame number in a video sequence and the

y-axis denotes the scalar of anomaly score.
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