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A. Training procedures
In order to explore the training manners of the two-stage

model that may bring benefits to the final results, in this sup-
plemental material, we conduct three schemes, (i) S1 . S2:
pre-training the SPATN model in stage one, then fixing its
parameters and training SPGNet in stage two; (ii) S1onS2:
pre-training the SPATN model in stage one, then jointly
training with the SPGNet in stage two; (iii) S1 ‖S2: train-
ing the SPATN and SPGNet simultaneously, in which the
SPGNet takes the ground-truth target parsing map Spt as
input. During the inference, the model takes the predicted
target parsing map Ŝpt

from the SPATN model as input to
generate the final results. The comparison results are shown
in Table A. We find that though the joint training manner
(S1onS2) usually obtains great performance in many fields,
it shows inferior results in this task. We analyze that 1) due
to the long pathway of SPGNet, the gradient from the Lfull

to update the SPATN model tends to be zero, making the
SPATN model seldomly benefits from the end-to-end train-
ing, 2) more importantly, there is a gap between the predicted
semantic parsing map and the ground-truth. The inaccurate
prediction may confuse the learning of the SPGNet, thus has
a negative impact on the generation process. Therefore, we
adopt the S1 ‖S2 scheme to train our two-stage model and
use the predicted target semantic maps in the first stage to
guide the final generation of the target image in the inference.

Scheme SSIM ↑ FID ↓ PCKh ↑ LPIPS ↓
S1 . S2 0.785 17.340 0.96 0.2240
S1onS2 0.792 24.309 0.96 0.2435
S1 ‖ S2 0.782 12.243 0.97 0.2105

Table A. The quantitative comparison of different training schemes
on our DeepFashion test set. ↑ (↓) means higher (lower) is better.

B. Network Architecture of SPGNet
Our SPGNet consists of a pose encoder, an appearance

encoder and a decoder which is composed of several SPG-
Blocks. Table B shows the details of SPGNet. Table C
and Table D give the detailed network architecture of SPG-
Block and Feature Deformation Module, respectively. Conv.
(d, k, s) and ConvT.(d, k, s) denote convolution and trans-
posed convolution layer, where d, k and s are output dimen-
tion, convolution kernel size and stride, respectively. And
dim(ft−1) is the dimention of feature map ft−1. LReLU
is leaky ReLU with negative slope c. BN and IN represent
batch normalization and instance normalization, respectively.

The denotation of input is the same as that in the paper. Ips

denotes the source appearance image. Sps
and Ŝpt

are source
semantic parsing map and predicted target semantic parsing
map. p is keypoint heat map of the target pose. Φ2D and V
denote the projection of the predicted 3D flow and visibility
map from Intr-Flow [1], respectively.

C. Distance Map

Figure A. The details of the distance map generation.

It may be not enough to use only keypoints skeleton as
pose representations to generate semantic maps, especially
when the poses are complex or rare in the dataset. The intro-
duction of distance maps makes pose representation more
robust to various poses. We generate 12 lines {Lm|12m=1}
distance map with 18-channels keypoint heat maps to repre-
sent the body skeleton. Each skeleton generates one channel
distance map, thus we can generate a 12-channels distance
map {Mm|12m=1}, which has the same width and height of
the source image. The values in (x, y) of each Mm is calcu-
lated by the smallest distance between the point (x, y) and
the skeleton Lm. The m-th distance map can be obtained by:

M ′m(x, y) = min
(x′,y′)∈Lm

{
√

(x− x′)2 + (y − y′)2}, (1)

where (x′, y′) denotes the point on the skeleton Lm. Here,
we further normalize these values by introducing a negative
parameter κ. The final distance map is then defined as:

Mm(x, y) = exp(κ ∗M ′m(x, y)), (2)

where m ∈ {1, 2, 3...12} represents the m-th skeleton. In
this way, the closer the point to the skeleton, the larger the
value is. Thus it can well model the body structure. The
process of distance map generation is shown in Fig. A.
The experimental results on DeepFashion show that without
using the distance map, the mIOU of the predicted semantic
maps is 0.520, while when using the distance map, the mIOU
is 0.539. By using the distance map, our method can generate
plausible semantic parsing maps even though the poses are
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Input
Ips (3××256× 256)
Φ2D (2××256× 256)
V (1××256× 256)

p
(18× 256× 256)

Ips , (3× 256× 256)
Sps , Ŝpt , (20× 256× 256)

Feature
Extraction

Conv. (32, 1, 1)
ResidualBlock, ResidualBlock, FeatureWarp

ReLU, Conv. (64, 3, 2), BN
ResidualBlock, ResidualBlock, FeatureWarp

ReLU, Conv. (128, 3, 2), BN
ResidualBlock, ResidualBlock, FeatureWarp

ReLU, Conv. (128, 3, 2), BN
ResidualBlock, ResidualBlock, FeatureWarp

ReLU, Conv. (128, 3, 2), BN
ResidualBlock, ResidualBlock, FeatureWarp

ReLU, Conv. (128, 3, 2), BN
ResidualBlock, ResidualBlock
ReLU, Conv. (128, 3, 2), BN

ResidualBlock, ResidualBlock
ReLU, Conv. (128, 3, 2), BN

Conv. (32, 1, 1)
ResidualBlock, ResidualBlock

ReLU, Conv. (64, 3, 2), BN
ResidualBlock, ResidualBlock
ReLU, Conv. (128, 3, 2), BN

ResidualBlock, ResidualBlock
ReLU, Conv. (128, 3, 2), BN

ResidualBlock, ResidualBlock
ReLU, Conv. (128, 3, 2), BN

ResidualBlock, ResidualBlock
ReLU, Conv. (128, 3, 2), BN

ResidualBlock, ResidualBlock
ReLU, Conv. (128, 3, 2), BN

ResidualBlock, ResidualBlock
ReLU, Conv. (128, 3, 2), BN

Conv. (32, 3, 1), IN, LReLU(0.2)
Conv. (64, 3, 2), IN, LReLU(0.2)
Conv. (128, 3, 2), IN, LReLU(0.2)
ConvT.(64, 3, 2), IN, LReLU(0.2)
ConvT.(32, 3, 2), IN, LReLU(0.2)

ConvT.(128, 3, 1), Tanh
Region Average Pooling

output warped appearance features fw
a pose features fp Style Codes ST

Feature
Fusion

ReLU, Conv. (512, 3, 1) PixelShuffle(2), SPGBlock 1
ReLU, Conv. (512, 3, 1) PixelShuffle(2), SPGBlock 2
ReLU, Conv. (512, 3, 1) PixelShuffle(2), SPGBlock 3
ReLU, Conv. (512, 3, 1) PixelShuffle(2), SPGBlock 4
ReLU, Conv. (384, 3, 1) PixelShuffle(2), SPGBlock 5
ReLU, Conv. (256, 3, 1) PixelShuffle(2), SPGBlock 6
ReLU, Conv. (128, 3, 1) PixelShuffle(2), SPGBlock 7

Conv. (3, 7, 1)
Tanh()

output Îpt
(3× 256× 256)

Table B. Details of SPGNet Architecture.

Input ft−1 fw
a fp ST Ŝpt

SPGBlock

ft−1 Concat broadcasting

ft−1
SEAN, ReLU

Conv. (dim(ft−1), 1, 1)
Concat

SEAN, ReLU
Conv. (dim(ft−1), 3, 1)

+ft−1

output ft

Table C. Details of SPGBlock.

complex or rare (e.g., crossed hand in Figure B), which will
further benefit the later target image generation.

D. More Qualitative Results
In this section, we show more visual comparison with the

competing methods (i.e. PATN [5], Intr-Flow [1], GFLA [3],
XingGAN [4], ADGAN [2]) on DeepFashion and Market-
1501 in Figs. C and D, respectively. It can be seen that
our method can generate more semantic, consistent, and
photo-realistic results. Besides, we also show more visual
comparison of different SPGNet variants in Fig. E.

Input fa Φ2D V

Feature
Deformation

Warp V

Expand Feature
fw′
a ∗ (V == 1)

fw′
a ∗ (V == 0)

Visible part Invisible part
Concat

ResidualBlock
output fw

a

Table D. Details of Feature Deformation Module.

Figure B. The gain of the distance map to the image generation.
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Figure C. More visual comparison with the competing methods on DeepFashion.
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Figure D. More visual comparison with the competing methods on Market-1501.
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Figure E. More visual comparison of different SPGNet variants.
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