
Residential floor plan recognition and reconstruction
supplementary material

Xiaolei Lv, Shengchu Zhao, Xinyang Yu, Binqiang Zhao
Alibaba Group

{yanjun.lxl, shengchu.sc, xinyang.yu, binqiang.zhao}@alibaba-inc.com

1. RFP dataset
1.1. RFP dataset annotation.

Details of annotations of dataset are described below, in-
cluding structural elements annotation, text and symbols an-
notation and scale annotation.
Structural elements annotation. From left to right, an in-
put floor plan image, manual annotation image and raster-
ized pixel-by-pixel annotation are shown in Figure 1. The
black frame represents the cropping area. Blue walls rep-
resent load-bearing walls, usually 0.24m thick, and black
walls represent non-load-bearing walls with a thickness of
0.12m. The end of the wall is indicated by a cross. The end
points of the door (green) and window (red) are represented
by dots. The megenta color represents the wall connected
by the doorway (deep blue).
Text and symbols annotation. Text annotation are de-
scribed in Figure 2. Multiple Chinese characters are com-
bined into a complete word or phrase to form a category.
Symbols annotation are described in Figure 2. Multiple
symbols are combined into a combo, then marked. A sofa
and a tea table are marked together as ”sofa combo”. Din-
ner table combo, cooker combo, toiletries combo are also
shown in that figure. The cooker combo is composed of
oven and wash basin in kitchen. The bed combo consists
of beds and bedside table. The dining table combo is com-
posed of dinner table and chairs. The toiletries combo of
closestool, bathtub, and wash basin in bathroom.
Scale annotation. Scale annotation are described in Fig-
ure 3. Endpoints are divided into four classes, according to
the location related to the ROI region of floor plan images.
Also, every number area is marked.

1.2. Annotation consistency

In order to ensure the consistency of annotations, we
have established a quality inspection process, which is di-
vided into two stages. The first round of the process is com-
pleted by the annotator, who labels the floor plan image and
checks all annotations, and finally corrects all possible er-
rors. The second round is completed by different quality

CVC-
FP[9]

R2V[13] Cubi-
Casa5K[10]

RFP

Images 122 815 5000 7000
Res 905-7383 96-1920 50-8000 180-3615
Room 1320 7466 68877 50303
Wall 6089 16139 147024 232415

Table 1. Metrics between available datasets.

inspectors, who randomly check a fixed proportion of an-
notations (for example, 30%). If the error ratio exceeds a
certain percentage (for example, 5%), the current result will
be returned to the first round of annotators for annotation.
If the error ratio is less than a certain percentage, these an-
notations will be the final version.

1.3. RFP dataset statistics

In Figure 4, we show the statistical results of the number
of room types. Since our floor plan is mainly residential, the
housing type is relatively single. Figure 5,6,8 provide sta-
tistical information about the RFP data set, including image
resolution distribution, and effective area ratio distribution.
In Figure 8, we can see that at least half of the data have an
effective area ratio of less than 50%. Therefore, ROI detec-
tion is very critical. Finally, in Table 1, we further compare
some key statistics with all existing floor plan data sets, in-
cluding image number, resolutions, room number and wall
number.

2. Method
2.1. Multi task loss

We add automatic weight adjustment for each loss, and
rewrite as follows:

Lce =

C∑
c

[
1

σ2
c

∑
i

−yi log pi(c) + log σc

]
(1)

Laffinity =

C∑
c

[
1

σ2
c

∑
i

(Licgroup + Licseparate) + log σc

]
(2)

1

Figure 1. Structural elements annotation. From left to right, an input floor plan image, manual annotation image, rasterized pixel-by-pixel
annotation.

Figure 2. Text and symbols annotation example.

Figure 3. Scale annotation example.

Figure 4. Number of rooms in the RFP dataset.

Lregression =

K∑
k

[
1

σ2
k

∑
q

||Sk(q)− S∗
k(q)||2 + log σk

]
(3)

L = Lce + Laffinity + Lregression (4)

where σ in each loss is the different uncertainty parameter
that is learnt during training. log σ is used as a regulariza-
tion term to avoid trivial solutions. For the sake of simplic-
ity, we have omitted the superscript of σ.

2.2. Pipeline of scale calculation

The pipeline of scale calculation is shown in Figure 7.
Firstly, numbers and lines are processed respectively. The

Figure 5. Cropped image resolutions of RFP dataset.

Figure 6. Source image resolutions of RFP dataset.

numbers recognition module consists of number area detec-
tion, digits recognition and digits quantity regression part.
Number area detection part can detect all number areas on
the floor plan images. Digits recognition module could rec-
ognize each digit in number areas. Two results are obtained
in this part. One output is digits, and the other is number of
digits. In order to ensure the quality of number area detec-
tion results, a double inspection mechanism has been estab-
lished. We use the digits quantity regression module to cal-
culate the other result of the number of digits in the number
area. If the results of the above two quantities are the same,
the number area will be selected as the input of the next
module. While processing the digital part, the line segment
is processed in parallel. Endpoints of line segments are de-
tected by a deep neural network. Lines are generated using

Figure 7. Pipeline of scale recognition.

Figure 8. Effective area ratio distribution. The area under the curve
is 1.0.

those endpoints. Line segments and numbers are matched to
calculate scale. Each pair of lines and numbers can get one
scale. All those results are clustered by k-means method.
After cluster process, the class which owns the largest quan-

Figure 9. Architecture of line segment detection.

tity are reserved and others are removed as noise. Results
in the reserved class are averaged to obtain scale. The line
segment detection part is modeled as an FCN [14] network
with deconvolution layers. The task focuses on detecting
endpoints of line segments. The architecture is shown in
Figure 9.

2.3. Pixel wall width calculation

Based on the result of pixel segmentation, a general
method is used to determine the pixel width of the wall to
assist the vectorization process. The pixel width of the wall
is determined by two factors, one is the image resolution,
and the other is the physical size of the house. The relation-

Figure 10. Pixel wall width calculation (right) and vectorized wall
width calculation (left).-

ship of the three can be expressed as:

Scale =
physical size

image resolution
(5)

Normally, the physical thickness of the wall in the residen-
tial floor plan is fixed, such as 0.24m or 0.12m in China.
But due to the different scales, the width of the pixels on
the floor plan varies greatly. Previous work [13] used pic-
ture resolution to determine the threshold, which assumes
that all pictures have the same scale. We propose an adap-
tive method to obtain the pixel width of the wall. Since the
walls and doors are on fixed walls, and our segmentation
method divides each area (walls, doors and windows pixels)
into several parts. So, we extract the bounding box of the
doors and windows to get the pixel width of the wall. For
the area D of each door or window, we calculate its median
value as the center point (x, y) of the door and window. As
shown in Figure 10, we use a rectangle R to approximate
the area of each door and window. The rectangle is parame-
terized by the rotation angle θ, the widthw and the height h.
The parameters of the rectangle are obtained by optimizing
the following formula:

max
θ,w,h

IOU(Rasterized(R),D) (6)

After obtaining the length and width of the doors and win-
dows represented by rectangles, we use the median of the
width of the doors and windows as the pixel wall width.

2.4. Vectorized wall width calculation

After the vectorization is completed, because the thick-
ness of the walls is different, we need to calculate the thick-
ness of each part of the wall. At this time, the coordinates
of the starting/ending points of each part of the wall are
known, and we use rectangles to approximate the walls. We

need to optimize the wall thickness w, as shown in Fig-
ure 10. The goal is to make the area covered by the rectan-
gleR overlap the wall pixels A as much as possible.

max
w

IOU(Rasterized(R),A) (7)

3. Experiments Results
3.1. Lalignment experiments

If the angle between the wall line segment and the x-
axis or y-axis is less than 5 degrees, we consider that the
line segment is still horizontal or vertical, and if it is greater
than 5 degrees, we consider it to be an inclined wall. We
counted the proportion of inclined walls in ground truth,
our method (“Ours” item of Table 2 in the original paper)
and our method without Lalignment (“Ours-Lalignment” item of
Table 2). The ratio of the inclined wall in the ground truth
is 2%, the ratio using our method is 4%, and the ratio with-
out Lalignment is 21%. Therefore, adding Lalignment to our
optimization goal (Formula 15 in the original paper) can ef-
fectively avoid the generation of inclined walls.

3.2. Scale calculation

Performance is evaluated from two dimensions: posi-
tive rate and average error. True samples represents results
which error rates are under specific threshold (2%, 5%, and
10% in our experiments), compared with ground truth. Pos-
itive rate demonstrates rate of true samples. Average error
of all samples is 4.6mm. An ablation analysis of clustering
module and digits quantity regression module are investi-
gated, details are shown in Table 2. Those two modules
bring more than 25% rate increase than systems without
them.

3.3. Structural elements extraction

An ablation analysis of the loss in structural elements
extraction is presented here.

• w/o D: the ROI detection module is removed. The in-
put is the original input image instead of the cropped
one.

• w/ D + ce: The input image is cropped by ROI de-
tection module. We only use cross entropy loss and
opening regression loss.

• w/ D + ce + aaf: The input image is cropped by ROI
detection module. We use cross-entropy loss, affinity
field loss and opening regression loss.

• Our version: we use the full version of our algorithm.

Table 3 shows the comparison between the above
schemes and the complete method. Models are trained and
tested on the RFP dataset. From Table 3, we can see that the

Kmeans Digits quantities regression Average error (mm) Positive rate
2% 5% 10%

3 3 4.6 0.72 0.83 0.86
3 7 5.9 0.69 0.80 0.83
7 3 7.1 0.57 0.74 0.80
7 7 24.4 0.45 0.58 0.66

Table 2. Scale results. 3stands for with, 7stands for without

w/o D w/ D +
ce

w/ D +
ce + aaf

Our full
version

Acc. 0.81 0.92 0.95 0.96
mIoU 0.77 0.80 0.83 0.84
fwIoU 0.83 0.92 0.93 0.95
Table 3. Ablation study of structural elements extraction.

structural elements extraction module performs best when
equipped with affinity field loss and multi task loss. Since
DeepLabv3+ can meet the requirements as a basic network,
and the network structure is not the innovation of this arti-
cle, we do not study the influence of the different segmen-
tation network on the results.

3.4. Text and symbols detection

AP0.5 and AP0.75 are calculated, according to different
text classes. AP0.5 and AP0.75 of class bathroom is 0.98
and 0.85 respectively. Compared with other classes, size
of class bathroom is larger, and it contains more contex-
tual information. That is the reason that why it performs
well. Class other shows a low-level performance, because
it covers all situations which does not belong to room types
we defined clearly. AP0.75 is significantly lower than AP0.5.
The possible reason is that text are small objects. Therefore,
tiny location error could lead huge IOU error. Symbols de-
tection performance are also described by AP0.5 and AP0.75.
Quantitative results of text detection are shown in Table 4.

Every symbol class performs well, because those objects
are large and not hard to recognize. AP0.5 of all of classes
are more than 0.9. The decline of AP0.75 is less than text
detection module. Results are shown in Table 5.

Type AP0.5 AP0.75

Living room 0.94 0.79
Bedroom 0.91 0.78
Kitchen 0.97 0.84
Bathroom 0.98 0.85
Library 0.89 0.67
Balcony 0.95 0.81
Other 0.82 0.62

Table 4. Average precision of text detection.

Type AP0.5 AP0.75

Sofa Combo (Living room) 0.94 0.88
Dining Table Combo (Living room) 0.94 0.89
Bed Combo (Bedroom) 0.95 0.91
Cooker Combo (Kitchen) 0.93 0.83
Toiletries Combo (Bathroom) 0.91 0.80

Table 5. Average precision of symbols detection.

3.5. Generalization experiments on more data

We use dataset rent3d [12] and Cubi-Casa5K [10] to
evaluate generalization capability of our system. Figure 11
shows results. Although the images styles of in those
datasets are significantly different from ours, structure and
room types could still be identified accurately.

4. Experimental Implementation Details
ROI. We use the entire RFP data set. During training and
testing, input images are resized to 300×300. We use mean
average precision as metric in measuring the accuracy of
object detectors.
Structure info extraction. We use the entire RFP data set
and follow the division of test set and training set. We re-
sized the detected image to 512×512, and used a batch size
of 8 with a synchronized batch normalization implementa-
tion [5] cross multiple GPUs. We use the Adam optimizer
to update the parameters and train the network with a fixed
learning rate of 1e-3. The number of epochs is 300. For
the other methods we compare, we use the original hyper-
parameters that have been reported in their original papers
to train their networks. In order to obtain the best recogni-
tion results, we further evaluated the results in each training
period and only reported the best one.
Text and Symbol detection. Text detection model and
symbols detection model are similar. They are both based
on YOLOv4 model. The degree of alignment of fea-
tures and anchors influence network performance signifi-
cantly [16, 8]. However, YOLOv4 has no ROI pooling or
ROI align modules [15] to align feature and anchors. In-
creasing number of different sizes of anchors, by adjusting
the parameter of yolo layer of YOLOv4 [7], is a method to
alleviate the problem of misalignment between anchors and
features. 5 anchors ,instead of 3, are set in each grid of yolo
layer [7]. Furthermore, minimizing difference between size

Figure 11. Floor plan recognition and reconstruction results on rent3d(first three rows) and cubicasa5k(last two rows). From left to right,
an input floor plan image, semantic segmentation result with post-processing, reconstructed vector-graphics representation with room type
annotation, the corresponding 3D reconstruction model.

Figure 12. More floor plan recognition and reconstruction results. From left to right, an input floor plan image, semantic segmentation
result with post-processing, reconstructed vector-graphics representation with room type annotation, the corresponding 3D reconstruction
model. The original images come from Lianjia [3] (row 1, 5), Kujiale [2] (row 2) and Fangtianjia [1] (row 3, 4).

Figure 13. More floor plan recognition and reconstruction results. From left to right, an input floor plan image, semantic segmentation
result with post-processing, reconstructed vector-graphics representation with room type annotation, the corresponding 3D reconstruction
model. The original images come from Lianjia [3] (row 1, 2, 5), Sanweijia [4] (row 3, 4).

Figure 14. Endpoints of line segments heatmaps.

of anchors and objects could lead to less misalignment is-
sues. Thereby, height and width of anchors are obtained
by cluster analysis of bounding boxes of training set using
k-means++ [6]. Data augmentation techniques are utilized
to enhance performance of detector. Images are rotated to
different directions randomly when training, and Gaussian
noise is added to image. Height of inputs is resized ran-
domly, and width is same as height. To train text detection
model, batch size is 128 and 1000 epochs are processed. To
train symbol detection model, batch size is 128 and 1200
epochs are processed. When testing, inputs are resized to
608×608 and sent to models. Outputs are bounding boxes
of objects, with location of center points of objects and the
class of each object.

Scale calculation. To train number area detection model,
a multi-scale input strategy is utilized. Height of inputs is
adjusted from 480 to 1024 randomly. The interval is 32.
The width is the same as the height. Batch size is 128,
and 1500 epochs are processed. The backbone, Darknet,
of yolov4, is pretrained on MSCOCO dataset [11]. To train
endpoints detection model, size of input is 512×512. La-
bels are heatmaps, are shown in Figure 14. The training
batch size is 8, and number of epochs is 500. To train digits

recognition model, image scale is fixed to 320×320. The
number of training epochs is 1000. To train digits quantity
recognition model, the input is output of number area de-
tection part. It is resized to 128×128. The batch size is 128
and 500 epochs are processed.

In testing process, the pipeline is divided to two parts.
First part focuses on numbers. The size of the floor plan
image need to be adjusted to 608×608, as input of number
area detection model. After that, outputs of number area
model are resized to 320×320 and passed to digits recogni-
tion network. Also, those outputs are adjusted to 128×128
to pass to digit quantity regression network. Quantity of
digits is calculated by digit quantity regression network and
results of digits recognition network respectively, as shown
in Figure 7. Number areas, which acquire the same quantity
in processes mentioned above, is chosen to generate num-
ber. The second part of pipeline is to achieve line segments
detection task. Image is resized to 512×512. After process-
ing by endpoints detection network, heatmaps are obtained.
Max pooling is applied in those heatmaps to acquire end-
points. Endpoints which belong to the same line and same
class are utilized to generate a line segment. Lines and num-
ber areas are matched to acquire scale results. Those results

are clustered to eliminate noise, then averaged to calculate
final scale.

References
[1] Fangtianxia. https://www.fang.com/. 8
[2] Kujiale. https://www.kujiale.com/. 8
[3] Lianjia. https://www.lianjia.com/. 8, 9
[4] Sanweijia. https://www.3vjia.com/. 9
[5] Synchronized-batchnorm. https://github.com/

vacancy/Synchronized-BatchNorm-PyTorch. 6
[6] David Arthur and Sergei Vassilvitskii. k-means++: The

advantages of careful seeding. Technical report, Stanford,
2006. 10

[7] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-
Yuan Mark Liao. Yolov4: Optimal speed and accuracy of
object detection. arXiv preprint arXiv:2004.10934, 2020. 6

[8] Yuntao Chen, Chenxia Han, Naiyan Wang, and Zhaoxiang
Zhang. Revisiting feature alignment for one-stage object de-
tection. arXiv preprint arXiv:1908.01570, 2019. 6

[9] Lluı́s-Pere de las Heras, Oriol Ramos Terrades, Sergi Rob-
les, and Gemma Sánchez. Cvc-fp and sgt: a new database
for structural floor plan analysis and its groundtruthing tool.
International Journal on Document Analysis and Recogni-
tion (IJDAR), 18(1):15–30, 2015. 1

[10] Ahti Kalervo, Juha Ylioinas, Markus Häikiö, Antti Karhu,
and Juho Kannala. Cubicasa5k: A dataset and an improved
multi-task model for floorplan image analysis. In Scandina-
vian Conference on Image Analysis, pages 28–40. Springer,
2019. 1, 6

[11] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
European conference on computer vision, pages 740–755.
Springer, 2014. 10

[12] Chenxi Liu, Alexander G Schwing, Kaustav Kundu, Raquel
Urtasun, and Sanja Fidler. Rent3d: Floor-plan priors for
monocular layout estimation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 3413–3421, 2015. 6

[13] Chen Liu, Jiajun Wu, Pushmeet Kohli, and Yasutaka Fu-
rukawa. Raster-to-vector: Revisiting floorplan transforma-
tion. In Proceedings of the IEEE International Conference
on Computer Vision, pages 2195–2203, 2017. 1, 5

[14] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully
convolutional networks for semantic segmentation. In Pro-
ceedings of the IEEE conference on computer vision and pat-
tern recognition, pages 3431–3440, 2015. 4

[15] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster r-cnn: Towards real-time object detection with region
proposal networks. In Advances in neural information pro-
cessing systems, pages 91–99, 2015. 6

[16] Jiaqi Wang, Kai Chen, Shuo Yang, Chen Change Loy, and
Dahua Lin. Region proposal by guided anchoring. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 2965–2974, 2019. 6

https://www.fang.com/
https://www.kujiale.com/
https://www.lianjia.com/
https://www.3vjia.com/
https://github.com/vacancy/Synchronized-BatchNorm-PyTorch
https://github.com/vacancy/Synchronized-BatchNorm-PyTorch

