
Supplementary Material

A. Overview
This document provides additional technical details, ex-

perimental results, theoretical analysis, and qualitative re-
sults to the main paper. Specifically, in Section B, we pro-
vide more details on the implementation of the depth esti-
mation sub-task, and Section C shows the details and abla-
tions about the proposed IoU oriented loss. Section D pro-
vides more discussion which is omitted in the main paper.
Finally, Section E presents more visual results.

B. Depth Estimation
Uncertainty modeling. Following [18, 19, 10], we model
the heteroscedastic aleatoric uncertainty in the depth esti-
mation sub-task. Specifically, we simultaneously predict
the depth d and the standard deviation σ (or variance σ2):

[d, σ] = fw(x), (7)

where x is the input data and f is a convolutional neural
network parametrised by the parameters w. Then, we fix a
Laplace likelihood to model the uncertainty, and the loss for
the depth estimation sub-task can be formulated by:

L =

√
2

σ
||d− d∗||1 + log σ, (8)

where || · ||1 denotes the L1 norm and d∗ is the ground truth
value for depth d. Similarly for the Gaussian likelihood:

L =
1

2σ2
||d− d∗||2 +

1

2
log σ2, (9)

where || · ||2 denotes the L2 norm (please refer to [19] for
the derivation of Equation 8 and Equation 9). Note that the
uncertainty modeling is not claimed as our contribution.
Experimental results. First, from Figure 6 and Table 9, we
can find that uncertainty-based estimation improves the ac-
curacy of depth map, thereby improving the overall perfor-
mance of monocular 3D detection. Second, the experimen-
tal result also show that modeling uncertainty based on the
Laplace distribution (all models in the main paper adopted
this setting) is more suitable for our task than Gaussian dis-
tribution.

C. IoU Oriented Loss
C.1. Proof of Proposition

This section provides the proof of the following proposi-
tion, which is used in Equations 5 and 6 for IoU oriented
optimization in Section 3.6.
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Figure 6: Errors of depth estimation. We show the errors
of depth estimation as a function of the depth (x-axis) for
the plain scheme (top) and the uncertainty aware scheme
based on the Laplace likelihood (bottom).

uncert. Easy Mod. Hard
- 18.56 / 13.18 14.24 / 10.15 12.13 / 8.45

Gaussian 18.68 / 13.20 14.22 / 10.41 12.08 / 8.69
Laplace 20.29 / 14.51 16.15 / 11.12 14.07 / 9.97

Table 9: Analysis for the designs of depth estimation.
Metrics are AP40 of the Car category for BEV/3D detec-
tion tasks.

Proposition. Suppose all predicted items except the 3D
sizes (h,w, l) are completely correct, the contribution ratio
of each predicted side to the 3D IoU ∂IoU

∂h : ∂IoU
∂w : ∂IoU

∂l
can be approximated to 1

h : 1
w : 1

l .
Proof. Given the above conditions, the 3D IoU metric can
be formulated as:

IoU =

∏
i∈{h,w,l}min(i, i∗)

h× w × l + h∗ × w∗ × l∗ −
∏

i∈{h,w,l}min(i, i∗)
,

(10)
where (h∗, w∗, l∗) denotes the ground truth of 3D size
(h,w, l). With the different relationship between the pre-
diction and the ground truth of the 3D size, we can obtain
the following cases:
Case 1: If h ≤ h∗, w ≤ w∗, and l ≤ l∗, the Equation 10
can be simplified as:

IoU =
h× w × l

h∗ × w∗ × l∗
, (11)

and we further compute the partial derivative of 3D IoU
with respect to the variable h as

∂IoU

∂h
=

w × l
h∗ × w∗ × l∗

, (12)



where ∂IoU
∂h represents the partial derivative of 3D IoU with

respect to the variable h, analogically for ∂IoU
∂w and ∂IoU

∂l .
Then, combining the derivative of 3D IoU with respect to
h, w, and l, the contribution ratio of each predicted side can
be given as:

∂IoU

∂h
:
∂IoU

∂w
:
∂IoU

∂l
=

1

h
:

1

w
:

1

l
. (13)

Case 2: If h > h∗, w > w∗, and l > l∗, the Equation 10
can be simplified as:

IoU =
h∗ × w∗ × l∗

h× w × l
, (14)

and similar to Equation 12 and 13, we can derive the same
conclusion as Case 1.
Case 3: If h > h∗, w ≤ w∗, and l ≤ l∗, then we represent
the 3D IoU as:

IoU =
h∗ × w × l

h× w × l + h∗ × w∗ × l∗ − h∗ × w × l
. (15)

By calculating the derivative of 3D IoU with respect to h,
w, and l respectively, we can get the contribution ratio of
each predicted side:

∂IoU

∂h
:
∂IoU

∂w
:
∂IoU

∂l
=

w × l
h∗ × w∗ × l∗

:
1

w
:

1

l
. (16)

Case 4: If h > h∗, w > w∗, and l ≤ l∗, similarly, we can
get the IoU formulation as:

IoU =
h∗ × w∗ × l

h× w × l + h∗ × w∗ × l∗ − h∗ × w∗ × l
. (17)

Similar to previous steps, the formulation of each side’s
contribution rate to the 3D IoU is given as:

∂IoU

∂h
:
∂IoU

∂w
:
∂IoU

∂l
=

1

h
:

1

w
:
h∗ × w∗ × l∗

h× w × l × l
. (18)

The other cases are similar to Case 3 and Case 4. When
h ≈ h∗, w ≈ w∗, and l ≈ l∗, we can get the Equation 5
used in the main paper.

C.2. Experiments

We report the improvement introduced by the proposed
loss function in the main paper. To further validate the ef-
fectiveness of it, we also implement the 3D GIoU loss [41]
for reference. Specifically, we add the 3D GIoU loss as
a regularization item as in [41], investigating different
weights considered in our baseline model, and the AP40

of cars on the moderate setting on KITTI validation set (Ta-
ble 10) show that our IoU oriented optimization improves
accuracy but 3D-GIoU with different weights does not.

Baseline GIoU (w=0.5) GIoU (w=1) GIoU (w=5) Ours
11.12 10.17 10.19 8.48 11.74

Table 10: Ablation study for the proposed loss function
and 3D GIoU loss on the KITTI validation set. Metric is
AP40 of the Car category under moderate setting.

Range Easy Moderate Hard UnKnown Total
[5m, 15m] 2,131 1,428 963 1,457 5,979
[10m, 20m] 2,639 1,840 1,670 558 6,707

Table 11: Data distribution for the car samples located in
[5m, 15m] and [10m, 20m]. The data is collected from the
KITTI trainval set.

D. Performance for the Close Objects
The Figure 1 in the main paper provides lots of insights

to us. Except for the observations analyzed in the main
paper, we also found that the performance degrades for
the very close object. Here we provides our analysis for
this. In particular, there are three main reasons in total.
a) The close-range objects tend to have larger center mis-
alignment (see Figure 3 for the statistics). b) The objects
at closer ranges are usually more truncated, e.g. the red car
(depth=3.7, truncation=0.88) and the black car (depth=6.2,
truncation=0.34) in Figure 7. c) The training samples in the
close range are fewer. For example, there are 5,979 cars
in [5m, 15m] and 6,707 cars in [10m, 20m] on the KITTI
trainval set, and the distribution for those samples are sum-
marized in Table 11. Note that the KITTI annotate the dif-
ficulty of each samples according to its size of 2D bound-
ing box, occlusion, and truncation. The instance with ‘un-
Known’ tag usually means that it is extremely difficult to
detect and is ignored in evaluation. With that in mind, the
effective samples of those two ranges are 4,522 and 6,149.
In summary, the low performance of the very close objects
is caused by the limited training samples (c) and the large
proportion of hard cases (a, b).

E. More Visualizations
E.1. Learned features

From Figure 4 in the main paper, we can see there is a
misalignment between the center of the 2D bounding box
and the projected center of the 3D object, especially for
close objects (see Figure 3 and Figure 4). Accordingly,
we propose our solution for this problem. Here we visual-
ize the learned features of coarse center detection branch in
Figure 7 to show the effectiveness of the proposed method.
The qualitative results clearly show that using projected 3D
center as ground truth can make the coarse center more ac-
curate, thereby improving the localization accuracy.



Figure 7: Qualitative comparison for the learned features of coarse center detection task on the KITTI validation set.
Top: the input image. Middle: the features of the coarse center detection branch supervised by 2D center. Bottom: the
features of the coarse center detection branch supervised by projected 3D center. We use the write circle to highlight the
ground truth projected 3D center for better comparison. Best viewed in color with zooming in.

E.2. Comparison of qualitative results

Visualizations in the image plane. We show more qualita-
tive results of M3D-RPN (the best of all open-source stan-
dard monocular 3D detector) and the proposed method in
Figure 8. We use red circle to highlight the main differences
of each pair of images, and we can find that our method per-
forms better than M3D-RPN for dense objects.
Visualizations in the 3D world space. We also visualize
the 3D bounding boxes in the 3D world space for better
presentation. As shown in Figure 9, the proposed model
outputs better results than M3D-RPN, especially for the ori-
entation estimation.
Representative failure case. We show a typical error pat-
tern in monocular 3D object detection in Figure 10. We can
observe that the projected 3D bounding boxes fit the ob-
ject’s appearance tightly in the image plane. However, from
the visualization results in the 3D world space, this is a clear
false positive because the depth is inaccurate (the outline of
the object can be perceived through the point clouds, best
viewed with zooming in). Note that this problem is com-
mon in the monocular 3D detection task, which suggests
that depth estimation is a key factor restricting this task.



Figure 8: Qualitative comparison on the KITTI validation set. We visualize the 3D bounding boxes in the image plane.
Results are from M3D-RPN (left) and our method (right).

Figure 9: Qualitative comparison on the KITTI validation set. We visualize the 3D bounding boxes in the 3D world
space. Results are from M3D-RPN (top) and our method (middle). We also show the corresponding 2D image (bottom) for
reference. Best viewed in color with zooming in.



Figure 10: Failure case. We show a representative failure case which is caused by the inaccurate depth estimation.


