Generative Classifiers as a Basis for Trustworthy Image Classification
— Appendix —

Contents

A Methods — Additional Materials
A.1. Out-of-Distribution Detection . . . . .. ..

B Experiments — Additional Materials
B.1. Network Architecture . . . ... ... ...
B.2 Receptive Field . . . . ... .. .......
B.3. Calibration Error . . . . . ... ... ....

C Explainability — Additional Materials
C.1. 2D Decision Space . . . . . . .. ... ...
C.2 Class Similarity Matrix . . . . ... ... ..
C.3. Saliency Heatmaps . . . . . ... ......

D Robustness — Additional Materials
D.1. Corrupted Images Examples . . . . . .. ..
D.2 Adversarial Attack Objectives . . . . . . ..
D.3 Adversarial Trajectories . . . .. ... ...
D.4 Adversarial Attacks — Full Results . . . . . .

A. Methods — Additional Materials
A.l. Out-of-Distribution Detection

Originally, ony a single threshhold on the learned like-
lihood was used to detect OoD inputs, which fails in sev-
eral cases where the likelihoods of the inputs are unnatu-
rally high [34]. As a way to correct for this, the typicality
test [36] uses both an upper and a lower threshold, centered
symmetrically around the mean log-likelihood of the train-
ing data (Fig. 8, middle). For our ImageNet models, we
observe that the distribution of log-likelihood values in the
training set is highly asymmetrical (see Fig. 8). Therefore,
we introduce our third possibility, a two-tailed quantile test.
Instead of the thresholds being symmetric around the mean,
they are chosen so that an equal mass of the log-likelihood
histogram lies above the upper and below the lower thresh-
old (Fig. 8, middle). In practice, we only measure minor
differences in performance between the single-sample typi-
cality test and the two-tailed quantile test.

All three tests can also be seen as hypothesis tests, with
the null hypothesis being that the input is in-distribution.
The p-value for the hypothesis test is the fraction of train-
ing samples with scores in the OoD-zone, which also equals
the false positive rate. To evaluate the OoD detection capa-
bilities, we do not use a single threshold value, but want a

Simple threshold

Count

0.1

log q(x)

Single sample typicality test

Count

0.098 0.002

log g(x)

Two-tailed quantile test

Count

0.05 0.05

log q(x)

Figure 8: Illustration of three different OoD tests based on
the estimated likelihood. The curve shows the distribution
of likelihood scores in the training set. The blue part counts
as in-distribution, and the red part as OoD. The threshold is
chosen such that the red area (false positive rate, p-value), is
0.1 in all three cases, for illustration. In practice, this would
be chosen much lower, e.g. 0.001. The small red numbers
indicate the fraction of training samples above and below
each threshold.

measure that is independent of it. This is because the ac-
ceptable false negative/false positive trade-off depends on
the context/application that the model is used in. By vary-
ing the p-value of the test, we produce a receiver operat-
ing characteristic (ROC) curve. The area under this curve
(ROC-AUCQC), in percent, serves as a scalar measurement of
the OoD detection capabilities. An ROC-AUC of 100%
means that the OoD samples are perfectly separated from
the in-distribution samples and can always be identified cor-



rectly. A value of 50% indicates that the test performs ex-
actly as well as randomly deciding. Below 50%, worse than
random performance, the OoD data appears to be more in-
distribution as a significant fraction of the training data it-
self.

B. Experiments — Additional Materials
B.1. Network Architecture

In the following, we outline the design choices and train-
ing procedure used for training the INN model as a GC on
the ImageNet dataset. It has been noted in the past that
there are strong parallels between ResNet residual blocks
[21] and INN affine coupling blocks [13], described further
below. In fact, under some additional constraints, standard
ResNet residual blocks can also be numerically inverted [4].
Therefore, a standard ResNet is not only the most fitting
comparison to our GC, but also informs many of our de-
sign choices. The argument is, that ResNets contain many
carefully tested design choices, leading to their excellent
discriminative performance. Adopting these choices where
possible saves us from performing an infeasible number of
ablations and comparisons ourselves, and still achieve rela-
tively good performance empirically.

Affine coupling operation. As a basic building block of
our network, we use the affine coupling block shown in
Fig. 9. Such blocks were fist introduced in [13], and are
exactly and cheaply invertible, as well as having a tractable
Jacobian determinant. The incoming features are first split
in two halves, say u; and us, along the channel dimen-
sion. The first half u; is not changed, and passed straight
through. A subnetwork, similar to the residual subnetwork
of a ResNet then predicts affine coefficients s,¢ from w4,
which are used to perform an affine transformation on the
other half of the features us. This gives us outputs v1, vs:

vy =8(u1) Qua +t(u1) and vy =uy (13)

To invert this operation given only vy, v2, note that u; = v
is trivially available, so the same coefficients s,¢ can be
re-computed for the inverse. With these, the affine trans-
formation itself can be analytically inverted, to get back
ug = (v2—t(v1)) @s(v1). To guarantee invertibility, we re-
strict s(-) > 0. In theory, s(-) # 0 suffices, but this compli-
cates the situation and does not improve expressive power:
mirroring an output dimension is irrelevant for the network
and the loss. We ensure s(-) > 0 by using exp(a tanh(-))
activation on the s-outputs of the subnetwork, as previously
in [13], where « is a fixed hyperparameter. In principle, exp
alone would be enough, but this leads to instabilities dur-
ing training, as it can become infinitely large. Importantly
to note, the subnetwork itself never has to be inverted, and
is always computed forward. Therefore, it can contain the

usual operations such as convolutions or batch normaliza-
tion.

To compare, in a standard ResNet block, a copy oper-
ation is used instead of the split, and a simple addition is
performed in place of the affine transformation. Apart from
this, the structure is very similar.

Complete coupling blocks. The expressive power of the
affine coupling above is insufficient: half the data is not
touched at all, and the remaining varibles can only be scaled
up/down by a factor of at most exp(+«). We add two more
invertible operations to solve these problems: We first per-
form a global channel-wise affine transformation to all vari-
ables with scaling sgjopa and bias tgigpar. This technique was
already proposed in [13] and refined in [28] as ‘ActNorm’.
Note that in feed-forward networks, this is also often done
as part of the batch normalization layers. Again, Sgopal
must be positive, and we achieve the best results choosing
Sgiobal = Sosoftplus(y) = solog(1+€?). Here, v and tgobal
are learned directly as free parameters, and sg is a scalar hy-
perparameter which we fix to 0.1, while +y is initialized to
10.

Secondly, we want to use a different split in the next
block, and therefore have to apply some invertible opera-
tion that mixes the channels. So far, there is no ‘default’ ap-
proach to this in the INN literature. Various methods exist,
such as simply swapping the two halves [12], learned house-
holder reflections [50], fixed permutations [ 1], and learning
unconstrained mixing matrices [28], among others. While
it is desirable to use a learned mixing operations, we do
not find any benefits in practice. The method used for [28]
has no guaranteed invertibility, and the training can simply
crash when the matrix becomes singular. The householder
matrices from [50] quickly become computationally expen-
sive with many reflections, and in our case bring no em-
pirical benefit over fixed (not learned) mixing. Instead, we
use a random orthogonal matrix from the O(/N) Haar dis-
tribution after each coupling block, that stays fixed during
training. This encourages more mixing than a simple hard
permutation, and empirically gives the best results with our
architecture.

With an orthogonal mixing matrix, the overall log-
Jacobian-determinant of one coupling block can be shown
to be

log | det(J)| = Z log s(uy) + Z log sgiobal- ~ (14)

Due to the chain rule, and product decomposition of the
determinant, the sum of the log-Jac-det of each coupling
block will give the log-Jac-det of the entire network. An
illustration of a coupling block is given in Fig. 9, left.

Subnetworks. We adopt the ResNet design choices for
building the affine subnetworks, with one modification: we



Block output 48

!

’ Soft permute ‘

T4a

Coupling subnet

’ Global affine ‘ \ 1% 1 Conv. 256 — 24 + 24 ‘
4

48
T l Batch norm. + RelLU ]
’ Concatentate channels ‘ f

1 x 1 Conv. 64 — 256 ]
4
[ Batch norm. + RelLU \

t

[ 3 x 3 Conv. 64 — 64 }
4
’ Batch norm. + RelLU ‘

[ 1 x 1 Conv. 24 — 64 \
4

\ Batch norm. + ReLU ‘

’ Split channels ‘ t

1

Block input 48

Figure 9: Illustration of the coupling blocks used, as well as
the structure of the subnetworks used to predict the affine
components. The purple numbers indicate the number of
feature channels, given as an example for the fist resolution
level (see Table 1, Conv_2_x).

add an additional 1x1 projection layer as the final output.
This is motivated by the fact that the INN has less feature
maps than the ResNet for all but the last resolution level.
Therefore, the expressive power would be limited by only
having this few output channels for the final convolution.
The subnetwork design is shown in Fig. 9, right.

Downsampling blocks. In the past, various invertible
downsampling operations have been used, e.g. [13, 27, 2].
Notably, none of these have a learnable component, such
as strided convolutions. Instead, we introduce a downsam-
pling coupling block, as a natural extension of the down-
sampling residual blocks present at the end of each ResNet
section. Shown in more detail in Fig. 10, we use two of the
invertible re-ordering and re-shaping operations from [27],
but nested within a single coupling block. This way, the
subnetwork can make use of a strided 3 x 3 convolution as
a learned component to the downsampling. Note that we
did not perform rigorous ablations of this introduction, and
chose it mainly for better conformity to standard ResNets.

Network layout. The overall network layout is the same
as for the standard ResNet-50, which offers a good trade-
off between performance and model complexity. The input
images are immediately downsampled twice, once using a
downsampling coupling block with a 77 convolution, then
with a Haar wavelet transform as in [2]. The ResNet ana-

Block output 192 Block output 512

’ Soft permute ‘

1192

[ Global affine }

TTE?Z

[ Concatentate channels }

Strided
coupling
subnet

Strided Strided
residual

conv.
subnet

N

l Split channels

Block input 48 Block input 256

Figure 10: Illustration of our downsampling coupling
blocks (left), compared to the standard ResNet downsam-
pling blocks (right). The invertible downsampling opera-
tion (blue circles) reorders inputs in a checkerboard pattern
asin [27].

Layer Blocks | Im. size Channels R.F.

INN | ResNet | INN | ResNet
Input 224 3 3
Entry flow 1 112 12 64 8 6
Pool (Haar/max) 56 48 64 10 10
Conv_2.x 3 56 48 256 34 34
Conv_3_x 4 28 192 512 | 106 90
Conv_4_x 6 14 768 1024 | 314 266
Conv_5_x 3 7 3072 2048 | 538 426
Pool (DCT/avg.) 1| 150528 2048 00 00

Table 4: For each of the resolution levels in the INN and
ResNet-50, the number of coupling/residual blocks and spa-
tial size is given, along with the number of feature channels
and the maximum possible receptive field (R.F.).

logue is the so-called entry flow, which also uses a strided
7 x 7 convolution and a max-pooling operation. A series
of coupling blocks follow this, with downsampling blocks
distributed throughout, chosen in the same way as for the
ResNet-50, detailed in Tab. 1. The output of the INN con-
sists of 3072 two dimensional feature maps at a resolution
of 7 x 7 (compared to 2048 feature maps for the ResNet).
In the ResNet, the output feature maps are passed
through a global mean pooling operation. As explained in
[26], a discrete cosine transform (DCT) presents the best
invertible alternative to this: From our 3072 feature maps,
the DCT also produces mean pooled outputs, along with 48
other outputs per feature map, that encode the remaining in-



—— e s

H_====m-
THE T
Il

e o S gl

LIN-HEFETT
Uliaiiztizisisin
| e FRRT
“"% ggagiéuy“"
- s B R & |
|| L

Figure 11: Each 7 x 7 feature map is transformed to 49 or-
thogonal output features, using the DCT coefficients shown
above. Green > 0, Purple < 0, . The top left most
output feature is equal to the mean pooling operation.

formation. The DCT coefficients are visualized in Fig. 11.
As a final step, the ResNet performs a linear projection to
the 1000 logits. The analogous operation for the INN is tak-
ing the distance of the output z to each of the 1000 cluster
centers.

Low-rank p,. If each entry of p, is learned indepen-
dently, the total number of parameters for D-dimensional
latent space and M classes will be DM =~ 150 Mil for Im-
ageNet. This is completely impractical, as u, alone would
make up the majority of network parameters, which will
only lead to overfitting. We solve this by dividing up ., into
two parts, corresponding to the mean-pooled and the higher-
order DCT variables: fy = [fmean,y, fhresty]. We freely
learn all approx. 3 Mil parameters of tmean,y, and choose a
low-rank representation for the remaining fire,y, using K
prototype vectors fi:

Mrest,y

K
= b (15)

Both py and oy, are learned. This reduces the number
of parameters to DyeanM + K(Dyest + M). Choosing
K = 128 empirically gives the best validation performance,
and results in approx. 19 Mil parameters, almost a factor of
10 less than the full DM. However, it is important to note
that this is still much more than the fully connected layer

160

100

Figure 12: For the 49 DCT components images shown in
Fig. 11, the mean spread of the corresponding entries of i,
across classes is shown. Intuitively, this is how much each
DCT component contributes to classification. A value of 0
means that these dimensions do not affect the classification
at all. The mean pooled component has by far the largest in-
fluence, and the contribution of the high order components
(bottom right) is negligible. Due to the random horizontal
flip augmentation, the horizontally anti-symmetric compo-
nents hardly contribute (alternating rows).

of a standard ResNet, with approx. 2 Mil parameters. This
indicates it might be possible to find an even more efficient
representation of u, without sacrificing performance. The
influence of each component of the low-rank 4, is shown in
Fig. 12. While fimean,y contributes by far the most, training
without g ,, entirely (setting it to zero), degrades the val-
idation top-1 prediction performance by several percentage
points.

Data augmentation and training. As data augmentation,
we perform the usual random crops and horizontal flips,
with two additions: Firstly, as is standard practice with nor-
malizing flows specifically, we add uniform noise with am-
plitude 1/255 to the images, to remove the quantization.
This is necessary when training with the Jacobian, as the
quantization otherwise leads to problems. Secondly, we use
label smoothing [46] with & = 0.05. This is necessary
to prevent the mixture centroids from drifting further and
further apart: training with perfectly hard labels makes the
implicit assumption that all class components are infinitely
separated.

The training scheme is the same as for the standard
ResNet [21]: we use the SGD optimizer with a momentum
of 0.9 and the weight decay set to 0.0001. We set the initial
learning rate slightly lower to 0.07 compared to 0.1 for the
original ResNet. We also perform two subsequent cooling
steps whenever the loss plateaus, decreasing the learning
rate by a factor of 10 each time. The batch size is 64 per



| ResNet | INN
Network parameters (M) 235 | 554
All parameters (M) 256 | 77.5
FLOPs (G) 4.07 | 9.08

Table 5: Number of parameters and computational cost
for each model. ‘Network parameters’ only counts the
coupling/residual blocks. ‘All parameters’ additionally in-
cludes the fully connected output layer of the ResNet, and
the parametrization of i, for the INN. The (M) and (G)
indicates Mega and Giga respectively. For FLOPs, the
fused multiply-add instruction (FMA) is counted as a sin-
gle FLOP, as it is commonly a single instruction in modern
computing architectures.

GPU, training on 6 GPUs.

The constraint of invertibility is associated with an ex-
tra cost of parameters and computation cost compared to a
purely feed-forward network. Table 5 summarizes this in
comparison to a standard ResNet-50. Both in terms of net-
work parameters, as well FLOPs needed for one forward
pass of the network, the cost of the INN is about twice as
high as the ResNet. We are optimistic this overhead can be
reduced in the future with more efficient INN architectures.

B.2. Receptive Field

While the maximum possible receptive field (RF) of the
INN and a standard trained ResNet are roughly compara-
ble (see Table 1), we see large differences in the effective
RF. For the effective RF, we pick a feature space column
u, before the DCT pooling operation. Meaning, from the
H x W x 3072 feature space, u will be the 1 x 1 x 3072
column. We choose a column from the center to avoid in-
teractions with the edges. We call the individual features
u; (I = 1...3072). We now measure the gradient w.r.t.
each channel of each image pixel z;;, for real input im-
ages. The pixel position is ij, and the color channel is k.
We define the ‘sensitivity’ of the model at each position as
the L; norm of the gradient of the features w.r.t. that input
position, averaged over images from the test set:

3 3072

Sensitivity (i, j) = Epctest [ Z Z

k=1 1=1

3ul

Tijk

} (16)

There are other definitions that would be equally sensible
(squared gradients, frobenius norm, etc.), but the results al-
ways show the same behaviour.

The cross-sectional shape of this represents the effective
RF, and is shown in Fig. 13. We observe that for low 3, the
effective RF is very narrow. In fact it is almost as narrow as
it could possibly be: for 8 < 4, the FWHM of the sensitivity
is only 64 pixels. This is the same we would get from only

105 -

102

107"

Sensitivity
O 00 N0 = O
[N

2
2'8

°1 TR

10718 T T
—300 —200 —100

Relative input position

T
100 200 300

Figure 13: Effective receptive field for each value of 3, just
before the final pooling operation. Note the logarithmic sen-
sitivity axis.

the downsampling steps, without any spatial convolutions
(with 6 downsamplings, 26 = 64). This could indicate that
for the likelihood estimation, local details and structures are
more important than any long-range features. For higher
values of 3, the response more closely matches that of a
standard trained ResNet (1.25 times wider in line with the
1.25 times larger maximum possible RF).

B.3. Calibration Error

The calibration of a model measures the truthfulness of
the predictive posteriors. In short, if we consider predictions
where the model is e.g. 80% confident in a class, we would
expect the prediction to be correct 80% of the time. If it
were correct more often, it would be underconfident, and
vice versa, more commonly, if it were correct in much fewer
than 80% of cases, it would be overconfident. Plotting the
fraction of correct predictions R over the binned confidence
C of predictions gives the so-called calibration curve R(C').
For a perfectly calibrated model, the curve will follow the
diagonal, but usually the behaviour deviates.

To quantitatively measure the deviations, we compute
the expected- (ECE), the max- (MCE) and the overconfi-
dence calibration error (OCE). More details on the compu-
tation of these measures can be found e.g. in Appendix D of
[3]. The ECE measures the expected distance from the di-
agonal, weighted by the bin count n(C) at any confidence:

ECE =

> n(C)|C - R(C)| (17)

Ntot C

But for tasks with more than ~ 10 classes, the ECE is al-
most completely dominated by the ‘negative’ predictions:
for any ImageNet prediction, typically only a few classes
have a meaningful confidence, while e.g. 990 of the 1000
classes will have confidences < 0.1%. So the lower end
of the curve is weighted ~ 100 times stronger than the rest



IB-INN, 3 = RN

‘ 10 | 20 | 40 | 80 [16.0 | 32.0 | oo ‘
ECE (%) | 0.16 | 0.16 | 0.16 | 0.17 | 0.16 | 0.17 | 0.17 | 0.17
MCE (%) | 5.54 | 3.13 | 547 | 4.57 | 5.50 | 5.28 | 5.10 | 7.72
OCE 3.87 | 413 | 431 | 473 | 415 | 4.94 | 512 | 6.75

Table 6: Calibration Errors for different values for 5 and
for the ResNet. Expected Calibration Error (ECE), Max
Calibration Error (MCE), Overconfidence Calibration Error
(OCE) (see text for definitions).

of the curve, severely shifting the ECE statistic towards the
very low confidence regime. The MCE measures the maxi-
mum distance from the diagonal:

MCE = max |C — R(C)] (18)

The MCE is not affected by the same phenomenon as the
ECE, but in return is subject to random fluctuations of
sparsely populated regions on the curve; it only takes a sin-
gle bin into account. Finally, the OCE measures the normal-
ized fraction of wrong predictions that are highly confident
with C' > C..;, where we use Clpiy = 99.7%.
1
T Cont |1 —R(C)] (19)
C2>Corit

OCE =

For instance, an OCE of 3.5 would mean that in these high-
confidence cases, the model is wrong 3.5 times more often
than allowed, the error rate should be < 1—C.i; = 0.3% in
these cases. This measures more directly the cases we may
be interested in: we want to be able to trust the decisions if
they are very confident. The OCE is less noisy than MCE
in our case, as it takes more samples into account.

We report the result in Table 6, and show curves in
Fig. 14. In short, we confirm previous observations e.g. in
[3]: the GC models are better calibrated than DCs. The
OCE shows the clearest trend of increasing overconfidence
with 5. Even from the 3 = oo model to the standard
ResNet, there is a significant jump in the calibration error,
also seen clearly in the full calibration curves. As the loss
function for training at 8 = oo is essentially the same as
a standard ResNet, this must be due to the construction of
the model. Explained further in 4.2 (‘Class similarities’),
our conjecture is that it is due to the latent space structure
specifically.

C. Explainability — Additional Materials
C.1. 2D Decision Space

In the following, we show another possibility to visual-
ize the decision space for a smaller set of classes. In our
case, we select 10 labels from all ImageNet classes. Start-
ing from the full model, the i, of the selected classes are

=1 ResNet

1.0 1.0
k-1 -1

go.s go.s
g

£oe £o6
8 S
-

%04 S04
5 §
g g

® 0.2 ©0.2
g g
'S 'S

0.0 0.0

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 04 0.6 0.8 1.0

Confidence Confidence

Figure 14: Calibration curves for the model with 5 = 1,
and a standard ResNet-50, for reference. Deviations be-
low diagonal = overconfidence, above = underconfidence.
The error bars are the Poisson errors computed from the bin
count.

constrained to a plane and fine tuned, reaching 90% accu-
racy for this simplified 10-class case. This allows us to show
the entire decision space in a single 2D plot. The decision
boundaries between all classes form a Voronoi tessellation
of the decision space. All latent vectors inside the Voronoi
cell of a certain class will have the highest probability under
that class. In the case where the 1, are not constrained to
a plane and all 1000 classes are used, the behaviour is the
same, with high-dimensional polygons for each class, but
this can not be readily visualized.

C.2. Class Similarity Matrix

For the pairwise predictive uncertainty, we only consider
two classes, y € {1,2}. We denote the distance of the class
centers as Ay = ||u1 — pof|. We assume y = 1 is the top
prediction. This is just for simplification, as 1 and 2 can
be swapped in the derivation if y = 2 is the top prediction.
The prediction confidence c¢ for any latent vector z is then
between 0.5 and 1.0, computed as

q(z | y=1)
c(z) = (20)
)T GTe=D G (9=
The model’s latent density is
1 1
q(Z) = 5/\/(#1;1)+§N(M2;1) (2D

This allows us to explicitly work out how the confidences
will be distributed through the change-of-variables formula.
Note that z can be expressed in cylindrical coordinates ori-
ented along the line connecting 11 and po. All the radial
parts integrate out, only the position along this line is rele-
vant. After some substitutions and simplifications, we ob-



Figure 15: Latent space of a model with only ten classes,
where the 11, (black points) are constrained to a plane. The
black lines are the decision boundaries, e.g. all points inside
the ‘moped’-polygon will be classified as a moped. The
background is colored according to the probability density
of each mixture component.

tain

1 — 1 1
p(c) = T (c—c?) 8/2 exp (— IV log? <c - 1))

=p(c)

(22)
A is the normalization constant and has no closed form:

1
Az/ p(c)de (23)
1/2

And we simply call the unnormalized density p(c). Finally,
the expected confidence C' can be readily computed as

ol J ep(c)de (24)

= Jolode

The expected uncertainty as opposed to the confidence is
simply 1 — C.

C.3. Saliency Heatmaps

As outlined in the paper, to derive the saliency and pos-
terior heatmaps, we start with the following definition:

w® =DCT!(2) - DCT (11,
=DCT ' (2 — py). (25)

1.5/ 0.22

2.0 / 0.16

2.4 /0.11

2.8 / 0.08

3.2 / 0.06

3.5 / 0.05

“3s0d osmmare / oouegsI(]

3.7/ 0.04

4.0 / 0.04

0 200 400 600 800
Class index

Figure 16: Similarity matrix between all 1000 classes. The
two large clusters around class index 250 and 750 are dogs.
The colormap indicates the pairwise distance of the u, as
well as the expected pairwise posterior, meaning e.g. the
binary decision between a tabby cat and a tiger cat is asso-
ciated with 20% expected uncertainty, by construction (see
text).

Because the DCT operation is linear and orthogonal, it con-
serves distances, and we can write

1 1
o(el) o exp (= = sy ) = exp (=5 )

(26)
We can consider the spatial structure present in w®): It will
have three indices, k, [ for the spatial position and m for the
feature channels: w,(fllzn We can simply factorize over the

spatial dimensions. For the log-probability, we get

1
logq(zly) = Y — [y}
k.l

): ||2 + const. 27)

)

= Z log q(wyi|y) (28)

We will ignore the const = —dim(z) log(2)/2 for conve-
nience. This spatial decomposition of log p(z|y) allows us
to make various heatmap visualziations in a principled way.

First, we consider — log p(wg;|y). Considering the sum
over pixels, this looks like a point-wise entropy. The com-
mon interpretation from information theory is, that this is
a measure how much information is contained in each part
of the image. The values in each pixel sum to — log p(z|y),
which is then the overall entropy of the latent vector for
this image. To remove the class dependence, we plot the
‘saliency heatmap’:

Qsaliency (k,1) = —log (Z q(wmy)p(y)) (29)

Y



Some examples for this are shown in Fig. 17.

C.4. Posterior Heatmaps

We can now consider the class prediction:

gl ale)
W) == Gl ~ 5G)

where p(y) = 1/M and the Jacobian | det J| both cancel
out. We therefore plot for any class the following ‘class
posterior heatmap’:

(30)

Qatass(k, 1, y) = logp(wpily) — S st S =S5
Kl

€2y
The —Sj; term means a fixed ‘image’ is subtracted from
each heatmap, representing the denominator, which is con-
stant for all classes. There is some freedom to choose Sy;,
as long as it sums to S. When distributing it evenly over
space, the differences in the heatmaps between classes are
hard to see by eye, compared to the common differences
within the heatmaps shared across classes, which are larger
by magnitude. Heuristically, we instead find the best con-
trast when we choose the relative weight of each Sy, in the
following way:

i + 0.03

S =8 M
K S (i1 + 0.03)

(32)

where 7y is the same as log p(wy;) but normalized to
the [0, 1]-range over each image. Additional examples are
shown in Fig. 17.

Comparing to Eq. 30, we see that summing Qclass
over feature-space pixels gives exactly the log-prediction
log go(y|x). So Qciass represents a spatial decomposition
of the actual predictive output:

q(ylz) = exp (Z Qctass(k, 1, y)) (33)
kl

D. Robustness — Additional Materials
D.1. Corrupted Images Examples

Examples of the different corruptions and the severity
levels are shown in Fig. 18.

D.2. Adversarial Attack Objectives

As explained in the paper, we performed the well estab-
lished ‘Carlini-Wagner’ white-box targeted attack method
introduced in [8]. Here, the attacked image is parametrized
as Taqy = 3(tanh(w) + 1), to ensure the image values are
between 0 and 1. The attack then consists of optimizing w

directly to minimize the following objective:

Low(w,2) = |Tagy (w) — 2]

+ cmax (max({ly sy £t} — g, —I{)
(34)

The original image is x, and the logits output by the model
for each class y are [,,. The target class, that the attacked im-
age is supposed to be classified as, is ¢ := Ygarget- The logits
are recomputed by the model on each iteration using the up-
dated x,qv(w), which they depend on: Iy = Iy (zaav(w)).
The gradients are propagated through the model. We call
the max-term Lg’l;)ss (Ytarget) in the paper.

In other words, the attack objective simultaneously at-
tempts to make x,4, and z the same, and to maximize
the difference between the logit of the target class, and the
currently next highest predicted class. Once the distance
is larger than the hyperparameter « in favour of the target
class, this loss term does not contribute anymore. Adjust-
ing ~ therefore has a direct influence on the confidence of
the (wrong) predictive posterior. From an attackers point
of view it is optimal to fool a classifier to make certain but
wrong predictions by setting a high value for «, while find-
ing a w so that z,4, is as close as possible to the original
image x. Ideally the differences between .4, and x remain
imperceptible to the human eye. From the victim networks
point of view, the targeted wrong prediction should be as
uncertain as possible, and the difference between z,q, and
x as large as possible.

For GCs, there are not logits per se. Instead, we use the
conditional log-likelihoods I, = log p(x|y), to get the same
behaviour. We performed all adversarial attacks on the same
randomly chosen 200 test images, paired with the fixed ran-
dom target class each. To perform the attack, we use the
Adam optimizer with its initial learning rate set to 0.01, as
in [8]. We performed the attacks with three different values
for k: 0.01, 1.0, co. The parameter ¢ was fixed and set to
10, which is the lowest possible value for achieving a 100%
attack success rate on all our tested models. We assume
the attack converged whenever Loy stops improving for
20 consecutive gradient steps.

As illustrated previously in [7], any adversarial attack
defense- or detection mechanism can itself become target
of a modified attack, fooling the classification and the de-
tection at the same time.

In line with this work, we construct a modified attack
loss to achieve fooling the two-tailed quantile test we uti-
lized for detecting attacks. As stated in the main part of this



True: Border terrier

True: chimpanzee

True: barrel
=

True: indigo bunting

Figure 17: Additional examples for saliency maps and posterior heatmaps for the top three classes. The white inset numbers
indicate the confidence in that class, which is equal to the exponential of the sum over the posterior heatmap (see text).

work we denote it as Low p(w, ):

Lowp(w, x) = Low (w, x)

+d- (Ipedian (log q(x')) — log q(xadv(w))) i

T'~ Xtrain

Laetect

(35)

In the added Lgetect term, rlne)c}ian (logg(2')) stands for

train

the median estimated probability density (PD) of the train-
ing set and log ¢(zaqv(w)) for the estimated PD of the per-
turbed image. Intuitively, we are now forcing x4, to move
to the center of the distribution of PD values of the train-
ing data. If it reaches the median exactly, the ROC-AUC
detection score will be 0% (also see Sec. A.1).

D.3. Adversarial Trajectories

We find that the attack consists of two distinct stages.
First, the attack attempts to cross into the area belonging
to the target class, leaving a certain margin specified im-
plicitly by . Second, the attack minimizes the magnitude
of the adversarial perturbation, while staying inside this re-
gion (sometimes stepping outside the region for a single it-
eration). We can visualize the attack’s trajectory and its ef-
fect on the decicison explicitly, using the 2D decision model

from Sec. C.1, see Fig. 19. We also perform the same vi-
sualization for the full model with 1000 classes, shown in
Fig. 20. We observe the same behaviour, although the de-
cision boundaries can no longer be visualized. For the 2D
figure, we consciously chose a target class located at the
‘edge’ of the latent space, not circled by other classes on
all sides. This is because for the 1000 class case in higher
dimensions, all classes are essentially guaranteed to be such
‘edge’ classes.

An important lesson to take from this is that the area of
maximal confidence of the attack is not necessarily closest
tO fitarget- Instead, the confidence depends on the difference
of the squared distance to the other classes (see Eq. 34).
Especially for high «, sufficient confidence is only achieved
far outside of the original distribution, which is what leads
to the almost perfect detection score for x = co reported in
Sec. D.4, Table 9 under the OoD column. This result is also
also visually illustrated in Fig. 7 (second column, third row)
in the main paper.

D.4. Adversarial Attacks — Full Results

All results concerning adversarial attacks are summa-
rized in Fig. 23, and Table 9, corresponding to Fig. 7 in
the main paper.

In our evaluation, we observe the GCs to be measur-
ably more robust compared to the DC in terms of neces-



gaussian
noise

gaussian
noise

shot
noise
shot

impulse
noise

impulse
noise

defocus
blur

defocus
blur

glass
blur

glass
blur

motion
blur

motion
blur

zoom
blur

zoom
blur

snow

frost
frost

fog
fog

brightness

brightness

contrast
contrast

elastic
transform

elastic
transform

pixelate

jpeg

ipeg
compression

Figure 18: We show the different corruption types (rows) with their severity levels from 1-5 (columns) applied to two sample
images (Samples belong to the ImageNet classes *fox squirrel’ and mobile home”).



Confidene not reached

—— Confidence satisfied

k=1.0

KR = OO

Figure 19: Additional examples for Fig. 6 with different settings for .

2.0

++ Conf. not reached
—— Conf. satisfied
. My target: ashcan

0.0

-2.0 . r
-2.0 -15 -1.0 -0.5 0.0 0.5 1.0 15 2.0

Figure 20: Visualization of the adversarial trajectories for
the full model, x = 1. The trajectory is projected to 2D
by fitting a plane through the five classes that the trajectory
passes closest to.

sary adversarial perturbation in order to successfully fool
the model. For achieving a successful attack, the adversarial
noise generally needs to be amplified for models with bet-
ter generative modeling capabilities (smaller values for 3),
as is the case for higher values for « (forcing highly con-
fident but wrong predictions). We would expect the trend
to continue for 5 < 1, for the adversarial perturbations to
be even larger, but at that point the task performance may
not be satisfactory anymore. We show this qualitatively in
Fig. 21. The gap to the ResNet (roughly factor 2) is con-
sistent to what was observed for a simplified version of CI-
FAR10 in [33]. In terms of &, the adversarial perturbations
increase a lot for kK = oo (forcing confident fooled predic-

tions), but the increase is homogeneous across models in-
cluding the ResNet. Furthermore, as can be seen in Figure
30, optimizing for highest possible confidence results in ad-
versarial noise that is clearly visible to the human eye. For
# = 0.01 and xk = 1 on the other hand, the applied noise is a
lot harder to perceive by humans (See Fig. 24 and Fig. 27).
We make a second important observation: For most models,
the predictive confidence is similar to the ResNet. However,
B =1and 8 = 2 are 100% confident in their (wrong) pre-
diction, even for low values of k. During the attack, this
occurs while the fooling part of the loss is already satisfied
and has no effect. The phenomenon is purely due to the at-
tack reducing the amplitude of the perturbation. Evidently,
by reducing the attack amplitude, the image moves into an
even more confident region of latent space. So in the sense
of predictive uncertainty on adversarial examples, GCs ac-
tually seem to be more vulnerable to adversarial attacks.

Regarding the adversarial perturbation needed in order
to successfully fool the model while simultaneously try-
ing to fool the attack detection mechanism we make three
main observations: the adversarial noise is increased when
putting a higher focus on fooling the attack detection mech-
anism. This can also be clearly seen in Fig. 22 and in the
quantitative comparison in Fig. 23, first column when com-
paring the three bars per 5. Second, as shown in the second
column of Fig. 23, we observe the attack detection capabil-
ities generally to decrease. For the good detection models
such as 8 = 1, the score stays reasonably high, while the
weaker models have a detection score significantly worse
than random. Lastly, the predictive uncertainty is not af-
fected by the detection attack at all (Fig. 23, third column).

Inspecting the perturbed images also provides some
clues as to how the attack fools the detection mechanism:
They show uniformly decreased contrast. As shown in
[34], such low-contrast images have unnaturally high esti-
mated likelihoods. In our case, this seems to compensate for
the lower estimated likelihood caused by the noise-like ad-
versarial perturbations, to make the image appear ‘typical’
overall.



ResNet

Figure 21: Qualitative results demonstrating the influence
of x (controlling the classifiers final confidence on targeted
classes) and (3 (controlling the generative modeling capabil-
ity of the classifier) on adversarial attack robustness. The
discriminative classifier ResNet is added for reference. The
figure, showing the per-pixel errors in RGB space, gives
the absolute difference between the original (bottom right
corner) and the adversarially perturbed image, amplified by
a scaling factor for visibility. For adversarial attacks to
achieve highly confident posteriors (high value for ) the
noise has to be amplified. In order to successfully trick a
classifier with better generative modeling capabilities (low
value for beta) the noise added by the attack has to be even
larger.

1000

Figure 22: Qualitative results demonstrating the influence of
d (controlling the strength put on fooling the attack detection
mechanism) and § on adversarial attack robustness for s
fixed to 1. The more weight is put on fooling the attack
detection mechanism (higher values for d), the more noise
must be added to the input image by the adversarial attack.
In order to fool the generally stronger detection mechanism
of classifiers with higher generative modeling capabilities,
the noise must be even higher.



Ly Pertubation, x = 0.01 Ly Pertubation, x = 1.0

Ly Pertubation, k = oo

0.040 0.040
0.035 4 0.035
0.030 4 0.030
0.025 4 0.025 4
0.020 4 0.020 =+
0.015 4

0.015
0.010 0.010
0.005 0.005

0.000 = 0.000

2 4 8 16 00 ResNe 2 4 8 16 32 o0 ResNe

Detection score, k = 0.01 Detection score, k = 1.0
100 o 100

90

80

70

60

50

40

30

2 4 8§ 16 32 o 2 4 8§ 16 32 o

Pred. uncertainty, x = 0.01 Pred. uncertainty, x = 1.0

40 40

30 30

20 4 20 4
10 10 o H
04 0 ode o0
8 16 32

4 16 32 o0 ResNet

-1 1 — T — T — T — T — T

1 2 4 0 ResNet

0.200

0.175 o
0.150
0.125
0.100
0.075

0.050

0.025

1 2 4 8 16 32 o0 ResNet

Detection score, k = 0o

100

90

80

70

60

50

40

30 -

1 2 4 8 16 32 o0

Pred. uncertainty, k = oo

Figure 23: Behaviour of GCs under adversarial attacks. The three rows of plots give the mean perturbation, detection score,
and uncertainty of the wrong prediction (1 — confidence). The three columns of plots correspond to adversarial attacks with
k = 0.01 (targeted prediction with any confidence is enough), x = 1 (targeted prediction should have high confidence), and
K = oo (targeted prediction should be as confident as possible). The three bars for each  correspond to: standard adversarial
attack (d = 0), as well as d = 66 and d = 1000, i.e. the detection mechanism is fooled at the same time as the prediction. The
dotted line in the top row roughly indicates the level at which attacks are clearly visible by eye. Note that this is subjective
and only a rough indication. The line in the second row indicates random performance, i.e. the OoD detection does nothing

useful.



Entropy
Xcorr. p(x) Val

Confidence Corruption

el
Z
=
(=
=N
(=

'

'
[=4
(=1
(=3
&

'

'
—_
(=1
(=}

'

'

'
—|
=
5
oy
%
=

'

'

'

Entropy
Xcorr.

Entropy
Xcorr. p(x) Val

0 0
1 ! 2] 0 o0 0 :
2 100 10 100 100 | 9741 163 0 0 0 4839
r 100 10 100 100 9998 [T146] 0 0 0 39.13
8 100 100 100 100 | 100  136| 0 0 0 5135
16 100 7305 7272 6259 6017 [130| 0 0 0 51.82
2 100 9997 100 100 | 100  128] 0 0 0 53.23
infinity | 100 9998 9998 9997 9997 [T09] 0 0O 0 5212

[ RN Jloof - [ - 0056[] - [ - 100[] - [ - [ - | \ \ [tea] o [ - [ - [ - ]

Table 9: kK = o0

Table 10: Table 7,8 and 9 show the quantitative results of our adversarial attack experiments. Each table was obtained
by performing the attack with a different value for x € 0.01,1,inf. A high value for x aims a more certain posterior for
targeted classes. The cell background colors green, orange and red stand for different values for d to ease the comparison
across models and tables for a human reader. The variable d quantifies the strength on fooling the intrinsic attack detection
mechanism of our learned classifiers. Note, that the ResNet does not model the data likelihood and therefore has not this
capability. We report the maximum class probability (Confidence), the pixel-wise /2-distance between the original and the
adversarially perturbed image averaged over all pixels (Corruption), the success rate of the attack (Success), the one (1t-tt)
and two-tailed (p(z)) typicality test OoD detection scores, as well as the posterior predictive uncertainty for the original (X)
and the corrupted validation data x.,, . Furthermore, we report the likelihood of the original validation data (p(X) Val).



Original

Figure 24: k =0.01,d =0 0.05
Original e

0.04

0.03

0.01

Figure 25: k = 0.01, d = 66
=1

Figure 26: k = 0.01, d = 1000

L2 Error



Original

Original

Figure 27: k =1,d =0
B=1

Figure 28: kK = 1, d = 66

—T> 0.05

0.04

0.03

0.01

Figure 29: k = 1, d = 1000

L2 Error



Original

Figure 30: kK = 00, d =0
o —1> 0.05
Original B=1 B=4

0.04

0.03

0.02

0.01

Figure 31: kK = 00, d = 66
B=1

L2 Error



