
Efficient Multi-Stage Video Denoising with Recurrent Spatio-Temporal Fusion
Supplementary Materials

Matteo Maggioni?, Yibin Huang?, Cheng Li?, Shuai Xiao, Zhongqian Fu, Fenglong Song
Huawei Noah’s Ark Lab

{matteo.maggioni, huangyibin1, licheng89, xiaoshuai7, fuzhongqian, songfenglong}@huawei.com

1. Implementation Aspects
1.1. Learnable Invertible Transforms

Color Transform. The C × C color transform matrix
is analogous to a YUV transformation for RGB domain. A
YUV transform matrix has size C = 3, however the pro-
posed model is designed for raw data, thus in our case the
matrix will have size C = 4, in order to transform each
color in the CFA Bayer pattern (e.g., RG1G2B). Practi-
cally the matrix is defined as [2]

M =


0.5 0.5 0.5 0.5
−0.5 0.5 0.5 −0.5
0.65 0.2784 −0.2784 −0.65
−0.2784 0.65 −0.65 0.2784

 =


Y
U
V
W

 (1)

where each row has unit norm and corresponds to a different
color transform basis. The luminance component Y can be
easily recognized in the first row of (1), and unsurprisingly
it corresponds to an (energy-preserving) average of the four
input color channels. In our context, the matrix M will be
used to initialize the 1× 1×C×C kernel of a (point-wise)
convolutional layer.

Frequency Transform. As initialization value for our
learnable frequency transform we use filters obtained by
standard wavelet families. In fact, each wavelet type has
a pair of decomposition filters, a low-pass ψL and a high-
pass ψH , as well as a complementary pair of reconstruction
filters, again, a low-pass φL and a high-pass φH . These are
all real 1-D filters of size 1×n, being n ∈ N+ an even inte-
ger value. We use these filters to generate the corresponding
n × n convolutional kernels. For example, the 2-D LL de-
composition kernel is obtained as ψL⊗ψL being⊗ the outer
product. We show all components involved in the learning
and application of the frequency transform in Fig. 1.

1.2. Models

VBM4D. VBM4D [5] is a traditional algorithm origi-
nally designed to remove independent and identically dis-
tributed zero-mean Gaussian noise in grayscale or RGB
video. However, in our experiments, we apply VBM4D on
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Figure 1: Frequency transform: convolutional kernels cor-
responds to the outer product ⊗ of the learned filters.

sRGB videos generated by an ISP [8] applied to the noisy
raw data. Thus the noise will be not independent, not iden-
tically distributed, and not white. These are not ideal condi-
tions for VBM4D, but we optimize its σ parameter, which
can be used to control the amount of denoising, to maximize
the PSNR of the validation data. We simply perform a grid
search to find the best σ for each ISO and each dataset.

FastDVDnet. We use the original FastDVDnet imple-
mentation provided by the authors [6]. FastDVDnet is de-
signed for Gaussian noise removal and uses a uniform noise
map corresponding to the variance of the distribution as ad-
ditional input of the network. Since we deal with signal-
dependent noise, we replace the uniform map with the vari-
ance map computed according to the raw noise model de-
fined in (2) of the main paper. In order to decrease model
complexity, we reduce the number of channels. Specifically,
in the 82.61 GFLOPs version, we use 8 channels in the in-
put layers, 16 channels in the highest-resolution scale, and
24 everywhere else. In the 22.16 GFLOPs version we use 8
channels everywhere.
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Operation Kernel Size Filters Output Size Comment
Input - - H ×W × 4 Current noisy frame.

Conv2D 1× 1× 4 4 H ×W × 4 Color transform.
StridedConv2D 2× 2× 4 16 H/2×W/2× 16 Frequency transform (stride 2).

Sub + Abs - - H/2×W/2× 4
Absolute difference of low-pass subbands of cur-
rent and previous fused frames (4 channels).

Concat - - H/2×W/2× 6

Concat low-pass absolute difference (4 chan-
nels), nearest neighbor upsampling of fusion
weights from lower scale (1 channel), and vari-
ance map of noisy frame (1 channel)

Conv2D + ReLU 3× 3× 6 16 H/2×W/2× 16 Input layer of fusion network.
Conv2D + ReLU 3× 3× 16 16 H/2×W/2× 16 Hidden layer (can be repeated).

Conv2D 3× 3× 16 1 H/2×W/2× 1 Fusion output.
Sigmoid - - H/2×W/2× 1 Fusion weights.

Fu
si

on

Mul + Add - - H/2×W/2× 16
Fusion of current noisy (16 channels) and previ-
ous fused (16 channels) using fusion weights (1
channel).

Concat - - H/2×W/2× 25

Concat fused output (16 channels), low-pass
subband of current frame (4 channels), denois-
ing output at lower scale after inverse frequency
transform (4 channels), variance map of fused
frame (1 channel)

Conv2D + ReLU 3× 3× 25 16 H/2×W/2× 16 Input layer of denoising network.
Conv2D + ReLU 3× 3× 16 16 H/2×W/2× 16 Hidden layer (can be repeated).D

en
oi

si
ng

Conv2D 3× 3× 16 16 H/2×W/2× 16 Denoising output.

Concat - - H/2×W/2× 33
Concat fusion output (16 channels), denoising
output (16 channels), and variance map (1 chan-
nel).

Conv2D + ReLU 3× 3× 33 16 H/2×W/2× 16 Input layer of refinement network.
Conv2D + ReLU 3× 3× 16 16 H/2×W/2× 16 Hidden layer (can be repeated).

Conv2D 3× 3× 16 16 H/2×W/2× 16 Refinement output.
Sigmoid - - H/2×W/2× 1 Refinement weights.

R
efi

ne
m

en
t

Mul + Add - - H/2×W/2× 16
Refinement of denoising output (16 channels)
using current fused (16 channels) and refinement
weights (1 channel).

TransConv2D 2× 2× 16 4 H ×W × 4 Inverse frequency transform (2× upsampling).
Conv2D 1× 1× 4 4 H ×W × 4 Inverse color transform.
Output - - H ×W × 4 Final output frame.

Table 1: Architecture of the proposed EMVD method.

EDVR. We build EDVR baseline as in [7], with five
residual blocks in PCD alignment module and 40 residual
blocks in the reconstruction module. The number of fil-
ters is 128. Since we are dealing with raw denoising, we
need to modify the input and output channels to be four, i.e.
the number of colors in the CFA (for example RG1G2B).
When constructing a smaller network we reduce the number
of filters to 48. Also we remove the global residual connec-
tion because it has been shown that it makes convergence of
low-capacity networks more difficult [4].

RViDeNet. In our experiments, we use the publicly
available RViDeNet model1. We build a lower-complexity

1https://github.com/cao-cong/RViDeNet

version of RViDeNet by reducing the capacity of all sub-
networks in the original architecture. Specifically, in the
pre-denoising module we reduce the number of scales to
2. In the other sub-networks, we use a single group of de-
formable convolutions, a single residual block in front of
the alignment module, and two residual blocks following
the temporal fusion. All convolutions have 16 channels. We
train this model as suggested in the original paper [8], with
only the raw reconstruction term in the loss.

EMVD. In Table 1 we describe the proposed EMVD ar-
chitecture, listing all operations used to process a frame in
the input video. For clarity we separate the three process-
ing stages, as well as the initial and final transformations. A
diagram is shown in Fig. 2 of the main paper.
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Wavelet Type Kernel Size ∆ PSNR

Haar 2× 2 0.0
Symlets 2 4× 4 -0.01

Daubechies 2 4× 4 -0.19
Daubechies 3 6× 6 -0.09

Biorthogonal 3.1 4× 4 -0.15
Biorthogonal 1.3 6× 6 -0.05

Rev. Biorthogonal 3.1 4× 4 -0.25
Rev. Biorthogonal 1.3 6× 6 -0.08

(a) Frequency transform initialization.

Tc Tf Learnable Invertible ∆ PSNR

M Haar X X 0.0
M Haar X × -0.10
M Haar × X -0.11
M Random X × -2.77

Random Haar X X -0.45
Random Haar X × -2.36
Random Random X X -0.77
Random Random X × -3.45

(b) Transform settings.

Table 2: Ablation of proposed EMVD model using different settings for the learnable color and frequency transforms.

2. Additional Experiments

Learnable Transforms. In Table 2a, we analyze the
effect of using different wavelet families as initialization
of the frequency transform. The low-complexity EMVD
model (5.38 GFLOPs) described in the main paper is high-
lighted in yellow in the tables, and it is used here as baseline
for these experiments. As one can see, Haar kernels, de-
spite having the smallest size, provide the best performance.
However we do not observe significant differences when us-
ing some of the other wavelet types, even when the size of
their kernels is larger. In Fig. 3 we visualize the frequency
transform coefficients for all experiments. In each plot, we
show both the learned transform coefficients as well as the
corresponding wavelet coefficients used for initialization.
We observe that the low-pass filters are relatively similar
in all cases, but the differences in the high-pass filters are
quite pronounced.

In Table 2b, we analyze different combinations for color
and frequency transform initialization, and whether or not
the transforms are set to be trainable or invertible. Note
that since both transforms are implemented as convolutions,
we can also analyze the result of using random initializa-
tion weights. We note that performance drops by up to
3.45dB PSNR when the color transform Tc is randomly ini-
tialized and invertibility loss is disabled. Enabling invert-
ibility loss leads to an increase in performance, but PSNR is
still 0.77dB lower than baseline if Tf is random and 0.45dB
if Tf is initialized with Haar. Differently, when Tc is initial-
ized with M (1) and Tf is initialized with Haar, both invert-
ibility and learnable properties only provide 0.1dB increase
in PSNR. Such relatively modest improvement can be ex-
plained by the filters shown in Fig. 4. As a matter of fact,
whenever the transforms are initialized with M and Haar,
the learned filters are remarkably similar even when invert-
ibility is disabled. This demonstrates that the transforms
learned by the network are always very close to be invert-
ible. Therefore we can argue that invertibility is a desirable
and optimal property of the transform operators.

Fusion. In Fig. 2, we show a set of frames from a single
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Figure 2: The variance of the fused frames is computed re-
cursively with the fusion weights.

video sequence. From top to bottom we show the fused
frames ȳt, the fusion weights γt (indicating dynamic re-
gions in red), the noise variance σ̂2

t in the noisy frame, and
the variance σ̄2

t of the noise in the fused frame recursively
computed as defined in (9) from the main paper. Observe
how the variance in regions where motion can be com-
pensated is reducing over time. Also, it is interesting to
note that the weights in the background will tend to zero
(blue values) as the sequence progresses, thus indicating
that more influence is given to the previous fused frame.
This is intuitively correct, because ideally at frame t the
weights γt given to the current frame should be proportional
to 1

t , whereas the weight γ̄t−1 given to the previous frame
should be proportional to 1 − 1

t , therefore γ̄t−1 � γt as
t→∞.

In Fig. 5a, we show some examples of fusion weights
for different sequences. In the figure we show, from left to
right, the previous fused image, the current noisy, the fu-
sion weights corresponding to the current noisy image, and

3



finally the output of the fusion. The weights are color coded
such that red corresponds to the most dynamic regions in
the image. In those regions, fusion is effectively disabled as
motion cannot be compensated, and the output fused image
will be equal to the current noisy. Differently in blue we de-
note those regions where fusion has the highest effect. As
one can see, the noise in the output image is dependent on
the fusion weights, and it is larger within highly dynamic
regions. We remark that even if the fusion network is not
explicitly supervised, the output is still clearly interpretable.

Refinement. In Fig. 5b we visualize few more exam-
ples of frames obtained after each individual stage in the
proposed EMVD. Particularly, from left to right, we show
the noisy frame, fused frame, denoised frame, refinement
weights applied to the fused image, and then the final (re-
fined) output image. Again the refinement weights have a
clear and interpretable behavior, as we can easily under-
stand that the objective of the refinement stage is to iden-
tify and extract high-frequency information from the fused
image in order to add them onto the denoised one. As a
matter of fact, the final result is the optimal combination
of these two images, as the noise is effectively suppressed
without compromising the quality of edges, fine details, and
textures in the (refined) output image.

Finally, in Fig. 5c, we show output images at different
frames of a single test sequence in the CRVD dataset [8].
It is interesting to observe the progression of the pro-
posed EMVD in each individual stage, as the image quality
steadily increases as more frames are processed. In fact, the
noise is progressively reduced in the fused image, which
in turn positively affects the subsequent denoising and re-
finement tasks. This is also clearly visible from the fu-
sion and refinement weights, which both get more accu-
rate with time. In particular, we notice how the refine-
ment weights are able to identify an increasing amount of
high-frequency information as the signal-to-noise-ratio in
the fused image improves. This figure visualized the inter-
dependence of spatial (sequential) and temporal (recurrent)
tasks in the proposed EMVD. However, despite this com-
plex and non-linear behavior, we stress once again that the
proposed model is straightforward to train as no intermedi-
ate supervision is required for its successful convergence.

Visual Comparisons. We show additional results on the
CRVD [8] dataset. Objective evaluation is reported in Ta-
ble 3 and Fig. 6 of the main paper. In Fig. 6 we show com-
parisons against reference state-of-the-art methods, namely
VBM4D [5], FastDVDnet [6], EDVR [7], and the recently
proposed RViDeNet [8]. As one can see, despite its sig-
nificantly lower complexity, the proposed EMVD is able
to achieve similar –if not better– denoising results among
all compared methods. Different dynamic (yellow crops)
and static (red crops) regions are highlighted for each test
case. In Fig. 7 we focus on the low-complexity scenario.

In this case, we compare our EMVD against the best low-
complexity models, namely FastDVDnet [6]. The proposed
method decidedly achieves the best performance, hence cor-
roborating the superior objective performance reported in
the main paper.

3. Noise Model Estimation
The standard Gaussian-Poissonian noise model for raw

data [3] can be estimated using a number of calibration im-
ages captured at various ISO levels. For the sake of sim-
plicity the ISO is assumed to be the only camera param-
eter that is affecting the noise distribution. With this, we
can estimate the noise variance, formalized in (2) of the
main paper, using noise estimation methods that apply ro-
bust estimators of scale (such as the Median of Absolute
Deviations – MAD) on high-frequency transform-domain
coefficients obtained by decorrelating transform operators
(such as DCT or Wavelet). Ideally, estimation should be
applied to patches whose underlying intensity is as uniform
as possible in order to avoid interference caused by high-
frequency response of edges or textures [1].
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Figure 3: Learned frequency transform coefficients (blue) compared to the corresponding wavelet filters used as initialization
(dashed orange). Red bar charts denote the difference between initial and learned coefficients. Refer to Section 2 for details.
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(c) Fusion, denoising, and refinement stages at different frames in one CRVD [8] sequence captured at ISO 25600.

Figure 5: Example of sequences processed by the proposed multi-stage EMVD. Refer to Section 2 for details.
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Figure 6: Visual comparisons on different videos from the CRVD dataset [8].
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