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In this supplementary material we provide additional de-
tails about the experimental setup used in the main paper,
results about the stability of the proposed Skip-Sideways
training, and additional qualitative results obtained in the
reconstruction task.

1. Notation

We denote input temporal sequences by x= =
(2K 2l € R? and outputs by y = (y!)E ,, yl!l €
R, We mainly focus on video clips, where each frame
has dimension d = h x w x 3. In action recognition tasks,
we have y!l! = ylll. We use single-frame 2D CNNs that
map inputs to logits My : R¢ — R9%. These networks are
compositions of layers, written as
Me(m[t]) = HD(';QD)OHD—l(',HD—l)O- . .oHl(m[t],Hl)
where each layer H;(-, ) is a function H; : R%-1 x RPl —
R%, o is a composition, i.e., G o F(x!) = G(F(x)), and
6 = (0;),,0; € RP* are trainable parameters. We also use
h = H(-,6) o
layer [.

We use £ : R% x R% — R defined as L(hp,y) =

S Ukl = 3,
[t] = My(x!"), and [ is a loss at time ¢, e.g., a cross-
entropy loss I(h,y) = — >, p(y;)logq(h;). We update
model parameters with the temporally averaged gradients,
ie,0:=0—-ay, Vol where « is a learning rate.
We use the following notation for Jacobian tensors. Let
aH(h 0) (h,0) = dH(h,0)

o |, be the Jacobian tensor of
(h 6) with respect to the variable h evaluated at h = h,
6 = 6. Note that, we use bold fonts to distinguish between

formal and actual Values of the variables. We also use a short-

hand notation (hl 1,0) = W(hl_lﬁl).

..o Hy (2™ 6,) to denote activations at

, where h[[t)] are logits, i.e.,

dh
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2. Experimental setup

Datasets. We use three datasets:

e HMDBS51 has 6,770 video clips representing 51 ac-
tions [7], sampled at 30fps. We use the same train and
test splits as [5, 9, 1 1].

e UCFI101 [13] has 13,320 videos clips and 101 human
actions, sampled at 25fps, with clips having 7.21sec on
average.

e Kinetics600 (K600) is a large-scale dataset for action
recognition [2] with around 490,000 videos. It has
600 human actions, and each action has at least 600
video clips per action. The clip duration is 10s, with
frame-rate 25{ps.

Tasks. Here we give additional details for the reconstruction
task used in the main paper. At each time-step ¢, the network
predicts the frame at time-step ¢ + 8, i.e., we want to learn a
mapping Mg (x!¥); 0) — yl) = £[+8] for all t. We choose
a displacement of 8 frames into the future as this corresponds
to the number of Skip-Sideways or Sideways units that we
use. That is, the output layer has to make a prediction for
the frame that the first layer is about to see. Hence the mod-
els have no access to the observation they must predict. To
successfully solve this task, it may be helpful for the mod-
els to learn to capture the underlying motion in the scene
so they can re-distribute pixels accordingly. We minimise
the following objective: L 77 [[M(z!) — ol 8|2
We compare Skip-Sideways against Sideways. The results
of Skip-Sideways are significantly better than the equiva-
lent model trained with Sideways (see additional qualitative
results included in Figure 6) and it shows the benefit of in-
tegrating temporal information through direct and shortcut
connections.

Distributed setting. We experiment on K600 using two
multi-host setups, where we use either 8 or 16 hosts. Each
host has 8 TPUs (Tensor Processing Units) amounting to 64



TPUs in the first setup, and 128 in the second setup. We use
the second setup only for large batch-size experiments shown
in Table 6, in the main paper. Unless we write otherwise, we
use batch-size 16 per host. Hence, the total batch-size is 128
in the first setup and 256 in the second setup.

For VGGS, we put each layer of the network into a single

Skip-Sideways unit and stick all units to different devices.
For VGG16, we group two consecutive layers into a single
Skip-Sideways unit and also stick all units to different devices.
Note that VGG’s design is convenient for the experiments
as it has no shortcut connections and has roughly the same
number of layers as the maximal number of devices (one
per device for VGG8 and two for VGG16) that we use to
distribute Skip-Sideways units. In the distributed setup, we
use JAX [1] and Haiku [3].
GPipe. We have adapted GPipe [4], another realisation
of a distributed training by pipelining. Here, we use the
same breakdown of our models to different pipeline stages,
e.g., two consecutive VGG16 layers are allocated to a single
pipeline stage and hence to a single device. Since the original
GPipe has been designed to work with non-temporal data,
we have extended it to work with videos by creating batches
of frames as micro-batches, using the GPipe terminology. As
GPipe implements correct BP, it also has two phases, forward
and backward, with a parameters update that follows that
on each device separately. Figure 1 illustrates comparison
between GPipe and Skip-Sideways training in terms of device
allocation.

In summary, in GPipe, (i) every micro-batch induces a
forward and a backward computation on every device, (ii)
activations on every device have to be kept alive until the
backwards pass, hence increasing memory pressure, (iii) un-
less the number of micro-batches is sufficiently large there
exists a non-negligible pipeline ‘bubble’ effect, and (iv) la-
tency, and hence the overall performance, varies as the result
of the moving ‘bubble’. By contrast, (i) we only pay the cost
of the backward computation (to simultaneously compute
activations and gradients), (ii) each device does not have to
hold previous activations as we exploit temporal correlation,
(ii1) we induce no bubble, (iv) latency is the same for each
frame.

3. Models

3D VGG and Causal 3D VGG. We ‘inflate’ [2] 2D VGG
to 3D VGG and train it from scratch, following the I3D
model. That is, we extend spatial VGG16 [12] kernels to
include temporal direction. We use 3 x 3 x 3 kernel shapes for
convolutions and max-pooling. Since Skip-Sideways training
is real-time and hence causal, for a fair comparison, we have
also implemented Causal 3D VGG. We have observed a
slightly better performance with kernels 3 x 3 x 3 over
2 X 3 x 3 (from 63.7 to 64.2). For simiplicity, we illustrate
the later variant in Figure 2a). We train all the models with

ADAM [6] and a cosine learning rate schedule.

Full-Res network. As a proof-of-concept, we have imple-
mented a network that maintains the input resolution through
all the layers. We have designed the architecture to be (i) con-
ceptually simple, (ii) not reduce spatial dimensions, and (iii)
be better at utilising hardware resources in a distributed set-
ting. Even though it better utilises the distributed hardware
resources, its training is expensive with BP and using a sin-
gle device. The network consists of a stack of convolutional
kernels with 3 x 3 filters, and pooling layers with the same
kernel shape (3x3). In all cases, we use striding one, so that
there is no reduction in spatial dimensions. We use 64 chan-
nels in the first two consecutive blocks, and next 32 channels
for rest of the network except from the last layer that maps
back the latent space into 3 channels, which we interpret
as RGB channels. We use Rectified Linear Units (ReL.U)
after each convolution, and hard hyperbolic tangent [10] in
the last layer. Each two consecutive convolutional layers
are followed by a single pooling layer. We use eight such
blocks that we assign to different distributed devices within
the Skip-Sideways units. We do not use a pooling layer after
the last convolutional layer. We use batch-normalization just
before ReLU. Figure 2b) illustrates the architecture showing
all the blocks.

4. Speed and Memory

We show results on speed improvements and memory
savings.
Space-to-depth. In all our experiments, we use space-to-
depth transformation, which makes computations more TPU-
friendly. More precisely, we first divide each frame into
2-by-2 non-overlapping patches and then we align them
along the channel dimension. This transformation decreases
each spatial dimension by two, and increases the channel
dimension by four. Equivalently, it also increases the spatial
receptive field of convolutional neural networks two times
per spatial dimension and results in fewer but more costly
convolutions (see Figure 4 in [ D!. Overall, however, space-
to-depth transformation often speeds up training without
affecting the accuracy of the model, but this is hardware
and model specific. We also experiment with spacetime-to-
depth transformation where we repeat the same procedure
also along the time dimension. It further speeds up the
computations as shown in Table 1. For our experiments with
Sideways and Skip-Sideways, we keep a more pure setup
with only space-to-depth transformation. This is because we
want to explicitly model the temporal transitions through the
Sideways or Skip-Sideways temporal connections.
Rematerialization. Rematerialization [8] is a method that
saves memory at the cost of extra computation. That is,

Ihttps://www.tensorflow.org/api_docs/python/tf/
nn/space_to_depth
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B Devices
Skip-Sideways + VGG16 2.3 1
Skip-Sideways + VGG16 3.6 2
Skip-Sideways + VGG16 7.2 8
GPipe [4] + VGG16 42 8
BP + 3D VGG16 1.9 1
BP + 3D VGG16 (Remat) 1.5 1
BP + Causal 3D VGG16 24 1
BP + 13D [2] 29 1
BP + 3D VGG16 (Batch) 5.5 8
BP + I3D (Batch) 6.5 8
BP + I3D (Batch)* 7.9 8

Table 1: Speed comparisons of various training strategies and
architectures in number of steps per second. Column devices
indicates the number of parallel devices used for distributed
training. All models use K600, 32 frames, resolution 224 x
224, and batch-size 8. (Remat) denotes rematerialization [8].
The last two rows are the exceptions and use batch-size 1
per device. We use space-to-depth transformation. * denotes
space-time-to-depth transformation.

the technique recomputes some intermediate activations
instead of storing them in memory. Specifically, we use
‘haiku.remat’ where we rematerialize each vgg-block con-
sisting of two or three 3D CNNs.

5. Theoretical savings

Sideways and Skip-Sideways do not propagate gradients
back in time, only forward in time. This means that, in
contrast to the traditional backpropagation, both mecha-
nisms do not need to store activations over a long sequence.
Therefore the memory cost is the same as the cost of do-
ing backpropagation of per-frame models and is indepen-
dent of the number of frames. Hence, as long as the
memory savings are concerned, both mechanisms should
scale up indefinitely with respect to the duration of the
video. Moreover, in a distributed setting, if we do not count
the costs of inter-device communication, the overall speed
should be bounded only by the speed of the slowest de-
vice. That is, if the network is a composition of D modules
M@(w[t]) = HD(~,9D)OHD_1(', 9D—1)O- . .OHl(w[t],91)
and each module H; sits on the j-th device, the run-time
T of My is T(Mp) = max; T (H;). Notice that with reg-
ular backprop the same runtime is the sum of runtimes of
individual modules.

6. Stability

Our method assumes smoothness of the input signal. In
this section, we investigate two settings that break that as-

sumption and see how those impact our training.
Frame-rate. We run experiments on HMDBS51 to inves-
tigate the effect of hyperparameters (learning rate and in-
put frame rate) on training stability for the proposed Skip-
Sideways compared to the original Sideways [9]. Intuitively,
the higher the learning rate or the lower the frame-rate,
the more we depart from our initial assumptions about the
smoothness of the input or intermediate activations across
time steps, hence the less stable the training should be. For
frame-rate, we consider the values 30fps, 15fps, 7fps, 4fps.
For learning rates, we use the values 1.0, 0.1, 0.01.

Figure 3 shows the behaviour when using different ini-
tial learning rates and Figure 4 shows the behaviour when
varying the input frame-rate.

In both figures, it can be observed that the proposed Skip-

Sideways (on the right) has a more stable training compared
to Sideways. In particular, our Skip-Sideways is much more
robust w.r.t. frame-rate. We hypothesise that through short-
cut and direct connections, the network can build smoother
representation, for instance, by interpolating between frames
in the hidden space.
Montage shots. We run experiments on HMDBS51, where
we create training sequences by assembling a new video from
two or more different clips, which we call montage shots.
Here, we investigate two scenarios. In the first scenario, we
assemble 32 frames videos by concatenating 16 frames from
one video and 16 frames from another video sampled from
the same batch. Labels follow the same procedure. That is,
the first 16 labels come from the first video, and the next
16 labels come from the second video. We also experiment
with the concatenation of 3 video clips, each with 16 frames.
Figure 5 shows the results. We can see a certain degree of
robustness to cuts in a video clip. The more cuts, the worse
the performance of the method.

In the second scenario, we interleave frames from all
videos. That is, we use the 1st frame from the video 1, then
the 1st frame from the video 2, then the 1st frame from the
video 3, then the 2nd frame from the video 1, then the 2nd
frame from the video 2, then the 2nd frame from the video
3, and repeat that for a total of 48 frames, with 16 frames
per clip. Note that the method, by design, is robust for
interleaving 2 video clips as there is no interference between
neurons operating on consecutive frames (e.g., 2! and 2!
in Figure 1, in the main paper). We did not manage to train
the network with Skip-Sideways in that setting.

In both experiments, we use per-frame losses with per-
frame labels. All the results above indicate that our Skip-
Sideways training is robust if the input is reasonably smooth.

7. Qualitative results

We provide further qualitative results for the future frame
prediction task. Here, we use higher frame resolution 224 x
224. Note that the same resolution is maintained over all the



layers of our neural networks, from the input input towards
the output. We compare Sideways with Skip-Sideways to
show the difference between both when the information is
aggregated temporally. As noted in the main paper, using
Full-Res models is expensive for BP. This shows that we
can possibly use computationally or memory-wise more
expensive models in video modelling. We show the results
in Figure 6.
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Figure 1: We show our adaptation of GPipe [4] to video modelling (left) and compare it with Sideways [9] and our Skip-
Sideways (right). We only show the device placement during the forward pass (F') and backward pass (5). Because of that, we
ignore shortcut connections in Skip-Sideways in this illustration. Here, we consider three distributed devices. F}. denotes that
activations computed in the forward pass from the ¢-th input frame are placed on the k-th device. We use similar notation for
gradients during the backward pass, i.e., B,lc. For Sideways and Skip-Sideways, we use B,lc1 2 to denote that the gradient was
obtained from the incoming gradient computed based on the [ -th input frame and Jacobian based on the I>-th input frame. We
extend this notation to B,l; 2.1 that denotes the gradient B,il +112 is combined with Jacobian computed based on the /3-th input
frame on the k-th device. For the sake of clarity, we only show four input frames for GPipe. However, we can see that in the
same number of twelve computation steps, Skip-Sideways can process more input frames and does not induce the ‘bubble’.
The vertical axis denote different devices and horizontal axis computation time.
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Figure 2: Our two baseline architectures. Causal 3D VGG and Full-Res. Note that, contrary to the Figure 1 in the main paper,
here we only show the connectivity of the architecture, and not the flow of pseudo-gradients nor activations. Moreover, the
time in the figure refers to input data frames — not the computation time.
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Figure 3: Robustness on the training fold with respect to the choice of the initial learning rate for Sideways (left) and our
Skip-Sideways (right). Red, green and blue denote the initial learning rate as 0.01, 0.1, 1.0. Solid curves depict the mean and
shaded areas show variance across various input frame-rates.
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Figure 4: Robustness on the training fold with respect to the choice of the input frame-rate for Sideways (left) and our
Skip-Sideways (right). Red, olive, green and violet denote the input frame-rate as 30, 15, 7, 4 respectively. Solid curves depict
the mean and shaded areas show variance across various input initial learning rates.
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Figure 5: Robustness of Skip-Sideways on the montage experiments where we concatenate two (left) or three (right) video
clips into a larger video. Red, green and blue denote the initial learning rate as 0.0001, 0.001, 0.01. We can see that in general
more video cuts hurt the performance. Sometimes the learning collapses for larger learning rates.
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Figure 6: Qualitative results for two video sequences from the validation fold of Kinetics600, where the models need to
generate the frame at step ¢ + 8 into the future given frames up to ¢. From top to bottom: input frames, ground-truth output
frames, predictions of Full-Res trained with Sideways, predictions of Full-Res trained with Skip-Sideways. We can observe
that the predictions of the model trained with Sideways are blurry and semantically similar to inputs, indicating that the model
lags behind. On the contrary, the predictions of the model trained with Skip-Sideways are sharper and semantically closer to
the ground-truth output frames. We use resolution 224 x 224.



