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1. Methodology Additional Details

1.1. Knowledge Graph Construction

Here we provide additional details on our knowledge
graph construction.

DBPedia First we extracted DBPedia [1]. DBPedia is ac-
tually a set of datasets collected from Wikipedia articles and
tables. For our knowledge graph we used the October 2016
crawl of Wikipedia.1 For our DBPedia edges we used the
following files: Article Categories, Category Labels, DBPe-
dia Ontology, Instance Types, Instance Types Sdtyped Dbo,
Mappingbased Objects, and Person Data.

Next we wrote string parsers and regular ex-
pressions to translate these triplets into lowercase
multi-word english expressions. This involved ex-
tracting the category words from the hyperlink: e.g.,
“<http://dbpedia.org/resource/Tadeusz Borowski>”
would be extracted as “tadeusz borowski”. We will provide
the parsing code and the processed final dbpedia files when
we release the code for this paper.

Before final filtering, this knowledge source contains
24, 685, 703 edges.

VisualGenome As we say in the main text we collect a
knowledge graph on VisualGenome [9] by taking the most
common edges in the scene graphs. We first create a split of
VisualGenome. So that this graph is maximally useful down
the road, we take a split that only contains the intersection
of COCO [12] train, VisualGenome train, and LVIS [5] train
so that the graph can safely be used for any of these datasets
on COCO. This also means that this split does not contain
and of OK-VQA [15] test set images.

For the remaining images, we take any edge which ap-
pear at least 50 times in that set and add to our list.

Before final filtering, this knowledge source contains
3, 326 edges.

hasPart KB / ConceptNet These two knowledge sources
were already in a fairly processed state, so no additional
processing was necessary before our task-specific filtering.

1https://wiki.dbpedia.org/downloads-2016-10

hasPart KB [2] was directly downloaded from source web-
site.

ConceptNet [13] was from the training data used for [11]
which has already been processed.2

hasPart KB contained 49, 848 edges and ConceptNet
contained 102, 400.
Combining and Filtering To combine and filter these four
knowledge bases into one graph, the first step was to simply
combine all of the knowledge triplets from the four knowl-
edge sources. Then, we removed all stop word concepts
(e.g. is, the, a) from the knowledge graph to avoid non-
meaningful edges.

Next, as we discuss in the main text we collect all of
the symbolic entities from the dataset (question, answers
and visual concepts) and then include edges that only in-
clude these concepts. We also limit the number of 25 edge
types that are the most common and useful for our end task,
shown in Fig.2 of the main text.

The final graph is 36, 199 edges, 7643 nodes and 25 edge
types.

We will release our processed knowledge graphs with the
source code.

1.2. Image Symbols

To get our image symbols, as we say in the main paper,
we run four classifiers and detectors on our dataset. The
classifiers/detectors we use are the following.

1. A ResNet-152 [6] trained on ImageNet [17]. Imple-
mentation from default PyTorch [16] nn library.

2. A ResNet-18 trained on Places365 [20] using that pub-
lication’s released code.

3. A Faster R-CNN trained on Visual Genome [9] using
the baseline from [7].

4. An EQL loss [19] -trained Mask R-CNN model on
LVIS (v1.0) [5] using the code from [19].

2https://ttic.uchicago.edu/˜kgimpel/resources.
html
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Dataset # Symbols

ImageNet 1000
VisualGenome 1600
LVIS 1203
Places 365

Table 1. Multi-modal BERT Hyperparameters

In Table 1 we show the number of symbols in each of
these datasets.

1.3. Answer vocab

For our answer vocab, we take any answer that appears in
the training set at least 10 times in the answer annotations.
For OKVQA v1.0, our vocabulary size is 2253 and on v1.1
it is 2250.

1.4. Graph Network to Multi-modal BERT Baseline

Here we more fully describe one of our baselines where
we feed the graph network into Multi-modal BERT without
making a separate prediction.

First, the graph network forward prediction to G is the
same as in Sec. 3.2 of the main paper except without the
zimplicit input as this would make a circular connection be-
tween the graph network and MMBERT. So we take the
input symbols and word2vec and we use the graph convolu-
tion layers H(l+1) = f(H(l),KG) where KG is the knowl-
edge graph. As before we end up with H(L) = G which is a
Rn×dh matrix which corresponds to having a hidden state of
size fh for each node (and therefore concept) in our graph.

Next, we summarize all of these separate hidden states
zsymbolic
i for each node i in the graph. We do this by adding

a dummy node and dummy edge type to the input graph
where each node in the graph is connected to the dummy
node by this dummy edge type. The idea is that we cre-
ate a special edge type that will try to “summarize” the in-
formation from all graph hidden states and pass it to this
dummy node. We then perform one final RGCN conv layer:
H(Summary) = f(G,KG), and extract the hidden state for
the dummy node zsymbolic

dummy or zsymbolic
summary .

With this summary embedding zsymbolic
summary, we then add

this summary vector as an additional input to the MMBERT
model. We compute a linear embedding layer for this input
to processes the graph summary vector and make it the same
input size as the other transformer inputs. We then append
this to the inputs of the MMBERT.

We tried other methods to get a single vector representa-
tion for the graph network, including a self-attention mech-
anism, and the self-attention mechanism for only these sub-
set of hidden states (only question and image nodes, only
answer nodes etc.). All of these performed worse than this

particular way of summarizing the graph network output
into one vector.

2. Network / Training Hyperparameters

Here we record the network and training parameters. In
Table 2 we show the network parameters for the MMBERT
baseline and subpart. In Table 3 we show the network pa-
rameters for the Graph Network. And in Table 4 we show
the training meta-parameters used to train all models.

Parameter Value

Hidden Size 768
Visual Embedding Dim 2048
Num Hidden 12
Num Attention Heads 12
Hidden Dropout Prob 0.1
Transfer function ReLU
BERT model name bert-base-uncased

Table 2. Multi-modal BERT Hyperparameters

Parameter Value

Node Hidden Size 128
Num Conv Layers 2
Graph Conv Type RGCN
Transfer function ReLU
Multi-modal BERT input compress dim 128

Table 3. Graph Network Hyperparameters

Parameter Value

Optimizer AdamW [8]
Scheduler Warmup Cosine
Batch Size 56
Learning Rate 5e− 5
Eps 1e− 8
Weight Decay 0
Warmup Steps 2000
Training Steps 88000

Table 4. Training Hyperparameters

3. Variance Values for Tables

Here we show the sample standard deviations for the
runs in our tables in Table 5 and Table 6.
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Method accuracy std

1. KRISP (ours) 32.31 0.24
Ablation of Symbolic Knowledge

2. MMBERT 29.26 0.76
3. KRISP w/ random graph 30.15 0.17

Ablation of Implicit Knowledge
4. KRISP w/o BERT pretrain 26.28 0.20
5. MMBERT w/o BERT pretrain 21.82 0.34

Ablation of Network Architecture
6. KRISP no late fusion 31.10 0.12
7. KRISP no MMBERT input 31.10 1.41
8. KRISP no MMBERT input or late fusion 25.00 1.83
9. KRISP no backprop into MMBERT 27.98 1.23

10. KRISP with GCN 30.58 0.52
11. KRISP feed graph into MMBERT 30.99 0.16

Ablation of Graph Inputs
12. KRISP no Q to graph 31.74 0.31
13. KRISP no I to graph 31.59 0.34
14. KRISP no symbol input 30.26 1.30
15. KRISP no w2v 31.95 0.12

Table 5. KRISP ablation on OK-VQA v1.1, with sample standard deviations. Mirrors Table 2 in the main text.

Method accuracy std
1. KRISP max(yimplicit, ysymbolic) (ours) 32.31 0.24
2. KRISP yimplicit 31.47 0.05
3. KRISP ysymbolic 29.36 0.50
4. KRISP no backprop yimplicit 28.19 1.17
5. KRISP oracle(yimplicit|ysymbolic) 36.71 0.29

Table 6. KRISP Subpart Analysis on OK-VQA v1.1, with sample standard deviations. Mirrors Table 3 in the main text.

Method accuracy

KRISP 32.31
KRISP Instance graph 31.98

Table 7. KRISP versus instance graph KRISP.

4. Asymptotic analysis and instance graph ab-
lation

Instance knowledge graph The main paper used a fixed
size knowledge graph for the experiments, but this was a
choice of convenience rather than an inherent limitation of
the method.

To show this, we re-ran KRISP where we filter the
knowledge graph dynamically to only include the sub-graph
relevant to the input instance. We get a similar final perfor-
mance. See Table 7.
Graph asymptotic size We also note that, for the purpose
of dataset scaling, that while the instance graph method re-

sults in a constant graph size w.r.t. dataset size, even for
fixed graphs, the graph grows less quickly than linear time.
Because many concepts are common, as we increase the
number of questions in the dataset, we add fewer and fewer
new edges to the overall graph. We tested this with VQAv2,
which is ∼80x bigger, the number of edges in the graph
only increased from 36, 199 to 61, 327 (∼2x more).

Runtime/memory On a 4 V100 GPU machine, KRISP
took ∼18.5 hours to train, vs ∼13 hours for the MMBERT
baseline. For batch size 1, KRISP takes up 3.4 GB of mem-
ory vs 3.1GB for MMBERT.

5. Pretraining and State-of-the-Art

In this section we provide the details for our state-of-the-
art method, as well as study the benefit of visio-linguistic
pretraining which has shown to be beneficial for many
vision-and-language tasks (see e.g. [14, 10]) including OK-
VQA [3] and compare the results to prior work.
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Pretraining MMBERT KRISP

BERT only 29.29 32.31
Masked COCO Captions 33.19 35.04
Masked VQA Questions 34.32 35.74
VQAv2 37.10 37.79
VQAv2 (incl. graph) – 38.90

Table 8. Vision/Language Pretraining results on OK-VQA v1.1.
We compare MMBERT and KRISP on our three pretraining tasks,
Masked COCO, Masked VQA and VQA. For the MMBERT
model we only pretrain the transformer except in the last exper-
iment where we pretrain the entire model (incl. graph).

Pretraining First, we look at three kinds of pretraining for
our model and how it affects the performance.

The first two are Masked COCO and Masked VQA, in-
troduced in [18]. The objective is that given the image re-
gions as v = {v1, ..., vN}, the input texts as l = {l1, ..., lM}
we train a model to reconstruct either l and/or v from cor-
rupted versions v̂ and l̂ where some words lm or image re-
gions vn are masked. In the Masked COCO task, the cap-
tains are used as l and for the Masked VQA task, the ques-
tions are used as l. The third task is simply training on the
question answering objective of VQAv2 [4].

In Table 8 we show the results of KRISP as well as the
baseline MMBERT pretrained on these tasks. Note that the
transformers are still pretrained on BERT—we do this pre-
training starting from BERT. For all but the last line in the
table, we only pretrain the transformer model on these tasks.
For the final number, we pretrain our entire KRISP model
including the graph network on the VQA task.

As we can see, all forms of pretraining improve our mod-
els. The most effective method of pretraining is to train on
VQA. This is intuitive since OK-VQA and VQA are quite
similar tasks. We also see that our KRISP model consis-
tently outperforms MMBERT, which is our model without
symbolic knowledge.

Interestingly, we find that it is not only beneficial to
pretrain the transformer but also the symbolic graph net-
work (note that for MMBERT the entire model is pretrained
already in the second to last line as it does not have a
graph component). Our fully pretrained KRISP achieves
38.90% accuracy, compared to fully pretrained MMBERT
of 37.10%.

6. Additional Ablations
We show the results of two final sets of ablations here.
First in Table 9 we ablate which sources knowledge

graphs we use. We show at the top our normal result where
we have all 4 knowledge graph sources. Below that we have
the accuracies for just the DBPedia graph, just the Visu-
alGenome graph, just the hasPart KB graph and just the
ConceptNet graph. As you might expect, all of these ab-

Method accuracy std

KRISP (ours) 32.31 0.24
KRISP DBPedia graph 31.69 1.19
KRISP VG graph 30.62 0.20
KRISP hasPart KB graph 30.68 0.59
KRISP ConceptNet graph 31.82 0.37

Table 9. Knowledge Graph Ablation

lations get lower numbers than the combined graph. The
two best graphs from this analysis seem to be DBPedia and
ConceptNet.

Method accuracy std

KRISP (ours) 32.31 0.24
KRISP ImageNet Symbols Only 31.68 0.23
KRISP Places Symbols Only 31.47 0.27
KRISP LVIS Symbols Only 31.48 0.39
KRISP VG Symbols Only 31.95 0.52

Table 10. Image Symbol Ablation

Next in Table 10 we ablate which image classifiers (and
thus which symbols) we use as input to our graph network.
At the top we show the full results with all 4 sets of sym-
bols. Then we individually show the results if we only use
the ImageNet symbols, if we only use the Places symbols,
the LVIS symbols and the VisualGenome symbols. Again,
we see that using any one of these image classifiers rather
than all 4 performs worse than our final method, although
the difference between them is not huge small. Based on
this experiment, VisualGenome detections were the most
significant inputs to the graph network.

7. More Qualitative Examples
Finally we show additional qualitative examples in

Fig. 1.
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Q: What activity is usually done sitting in those furniture?

Knowledge

(human, capable of, watch tv) (sofa, used for, watch tv)

(sofa, at location, livingroom ) (tv, at location, livingroom)

(tv, at location, apartment) (sofa, at location, home)

Q: What are the long objects hanging off of these animals called?

Knowledge

(elephant, is a, animal) (elephant, has part, head)

(elephant, has part, trunk) (elephant, at location, africa)

(trunk, is on, elephant) (trunk, has part, tissue)

Q: What material is this man's shorts made out of?

Q: What are the tires made of?

Knowledge

(tire, made of, rubber) (bike, has, tire)

(tire, has part, rubber) (tire, is on, bike)

(rubber, has part, carbon) (rubber, at location, tire)

Q: What is this model train sitting on?

Knowledge

(train car, is on, track) (train, at location, train station)

(train, has, tracks) (train, is on, train tracks)

(track, at location, station) (train, is on, track)

Q: Are these fruits or vegetables?

Ours: rubberBL: metal

Ours : denimBL: plastic

Ours : trunkBL: herd

Ours: watch tvBL: relax

BL: apple and orange Ours: fruit

Ours: trackBL: sidewalk

Knowledge

(man, is in, shorts) (man, is in, jeans)

(jean, made of, denim) (denim, is a, fabric)

(blue jean, made of, denim) (denim, is a, jeans)

Knowledge

(orange, is a, fruit) (mandarin, is a, fruit)

(apple, is a, fruit) (juice, made of, fruit)

(pear, is a, fruit) (fruit, at location, kitchen)

Q: What black veggie is on this pizza?

BL: olive Ours: onion

Knowledge

(olives, is on, pizza) (onion, is a, vegetable)

(onion, at location, pizza) (onion, is a, food)

(onion, at location, market) (onion, is a, root vegetables)

Q: What do people do on these items?

Knowledge

(person, capable of, ride) (motorcycle, used for, travel)

(bike, used for, ride) (motorcycle, has, mirror)

(motorcycle, used for, ride) (motorcycle, used for, transportation)

Q: From what can you make the shavings of these animals?

Knowledge

(wool, at location, sheep) (sheep, has part, wool)

(animal, has part, wool) (wool, is a, material)

(sheep, is a,  animal) (sheep, at location, farm)

Q: What is the beverage in the cup called?

Q: Where do you store this vehicle?

Knowledge

(boat, at location, harbor) (harbor, is a, station)

(boat, is in, water) (boat, is on, water)

(person, is on, boat) (pole, is on, boat)

Q: Is that horseradish or mustard?

Knowledge

(mustard, is on, hotdog) (mustard, at location, jar)

(mustard, is a, condiment) (military, part of, government)

(mustard, has property, spicy) (mustard, is a, colour)

Q: Where could you find these animals?

Ours: harborBL: boat

Ours : beerBL: hot dog

Ours : woolBL: shear

Ours: rideBL: motorcycle

BL: duck Ours: lake

Ours: mustardBL: wheat

Knowledge

(beer, is a, beverage) (beer, is in, glass) 

(drink, at location, cup) (beer, has property, liquid) 

(cup, has a, liquid) (liquid, at location, cup)

Knowledge

(duck, at location, lake) (water, at location, lake)

(duck, is a, animal) (duck, is in, water)

(lake, used for, fish) (duck, is a, bird)

Q: What do they call this type of pattern on this bedspread?

BL: checkered Ours: quilt

Knowledge

(quilt, is a, blankets) (bedspread, is a, blankets)

(quilt, has part, cloth) (blanket, is a, bedding)

(blanket, is on, bed) (quilt, is a, hobby)

Q: Who sponsored this tennis player?

BL: nike Ours: tennis

Knowledge

(nike, is a, victory) (nike, is a, artwork)

(tennis, is a, activity) (tennis, is a, sport)

(ball, used for, tennis) (tennis, is a, game)

Q: Why is this sign here?

BL: safety Ours: direction

Knowledge

(sign, used for, direction) (emergency, is a, safety)

(safety, has property, important) (arrow, is on, sign)

(sign, is on, train) (sign, is on, street)

Q: Where would you find these items? Q: What could you make with these?

Ours : officeBL: computer BL: vegetable Ours: salad

Knowledge

(monitor, at location, office) (keyboard, at location, office)

(desk, at location, office) (machine, at location, office)

(mouse, at location, office) (computer monitor, at location, desk)

Knowledge

(lettuce, at location, salad) (lettuce, part of, salad)

(salad, is on, plate) (salad, at location, kitchen)

(lettuce, is a, vegetable) (vegetable, has property, green)

Figure 1. More qualitative examples from KRISP. Showing predictions by our model and the implicit knowledge baseline Multi-modal
BERT. We show the question, image, and answers given by both models. We also show knowledge in the graph related to the question,
answers or image that seemed most relevant.
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