
Supplemental Materials

We strongly encourage the reader to view the video re-
sults available at https://nerf-w.github.io/.

A. Model Parameters

In the following, we document the selected hyperparam-
eters for NeRF-W. A grid search over the hyperparameter
space was employed to select the below values. Note that the
values were optimized for the Brandenburg Gate scene of the
Phototourism dataset and reused for the remaining scenes.
As in NeRF, we employ an MLP architecture for modeling
density and radiance. We apply 8 layers of 512 hidden units
for the ‘Base’ component, and 4 layers of 128 hidden units
for both ‘Static‘ and “Transient / Uncertainty’ components;
see Figure 3). Regarding our positional encoding functions
γ we use 15 frequencies for when encoding position and 4
when encoding viewing direction.

All model embeddings are initialized using Xavier uni-
form initializer. In order to optimize the appearance embed-
dings, we freeze the weights of the network (in order to not
alter the geometry of the 3D model) and only update the Gen-
erative Latent Appearance features to match the appearance
of the requested image. This procedure is carried out every
1000 steps during training and the weights are optimized for
50 steps.

During training, 512 points per ray are sampled from each
of the coarse and fine models for a total of 1024 points per
ray. We double that number during evaluation to 2048. The
latent embedding vector for appearance has an embedding
dimension of size n(a) = 48. For transient objects, we use
an embedding dimension of size n(τ) = 16. We select a
value of 0.01 for the L1 regularizer multiplier λu and 0.03

Figure 11: Samples of images removed by pre-processing. Images
where transient objects occupy more than 80% of the image or
where the NIMA score is below a threshold are discarded from the
scene. Photos by Flickr users alcanthus, headnut, uwehiksch, and
stevebaty / CC BY.

as the minimum importance βmin. Models are trained with
Adam over 300,000 iterations with a batch size of 2048 and
an initial learning rate of 0.001, decaying ten-fold every
150,000 iterations.

B. Evaluation

The problem of evaluating the performance of a view
synthesis system on in-the-wild photo collections is itself a
challenging problem, as it reduces to the still-open problem
of measuring perceptual image similarity [26, 38, 40, 42].
Though LPIPS [42] is an acceptable solution in many con-
texts, two perfectly-aligned images of the same 3D structure
imagined at different times of day or under different light-
ing conditions generally result in significant “perceptual”
image differences. This presents a challenge when evalu-
ating NeRF-W (and its ablation NeRF-A). After training,
only images in the training set are assigned optimized ap-
pearance embeddings `(a) — our model does not recover a
single model of the world, it recovers a family of solutions
under a variety of appearances. To evaluate a test-set image,
we must therefore identify the image’s corresponding `(a)

embedding.

Naive solutions to this problem, such as setting `(a) to
a vector of zeros or to the mean of optimized embeddings,
results in plausible renderings that, while structurally accu-
rate, fail to match the appearance of the ground truth. As
a result, perceptual metrics are unable to credibly measure
the quality of each method’s scene representation. To ad-
dress this deficiency, we evaluate NeRF-A and NeRF-W by
optimizing appearance embedding `(a) on the left half of
each ground-truth image and calculating metrics on the cor-
responding right half. This split-image evaluation scheme
enables NeRF-A and NeRF-W to adapt the scene’s appear-
ance without directly optimizing held-out pixels. Note that
by virtue of the model’s design, changes to the appearance
embedding cannot alter the underlying scene’s geometry
(see Figures 7 and 8), further limiting the potential for infor-
mation leakage.

Finally, note that the NRW baseline captures appearance
by encoding the entirety of a held-out image with an ap-
pearance encoder model. Unlike NeRF-W, this method is
unable to isolate geometry from appearance and, given a
sufficiently high-dimensional space, is capable of storing the
image itself. In preliminary experiments, we notice a small
drop in performance when applying a similar split-image
evaluation scheme as described above. To remain compara-
ble to prior results, we replicate the evaluation scheme as
originally published.

For the LPIPS error metric we use the AlexNet implemen-
tation provided at https://github.com/richzhang/

PerceptualSimilarity.



TRAIN VALIDATION

DATASET IMAGES PIXELS IMAGES PIXELS

BRANDENBURG GATE 763 564M 38 12M
SACRE COEUR 830 605M 40 14M
TREVI FOUNTAIN 1,689 1249M 39 14M
TAJ MAHAL 811 581M 27 9M
PRAGUE 2,000 1417M 28 9M
HAGIA SOPHIA 606 434M 29 10M

Table 2: Number of images and pixels per Phototourism scene.
Pixel counts measuring in millions.

C. Phototourism Dataset
As a coarse pre-filtering step, we remove low quality

images consisting largely of transient objects by omitting
those with a NIMA [34] score below 3. We further filter out
images where transient objects occupy more than 80% of the
image’s area according to a DeepLab v3 [6] model trained
on Ade20k. Figure 11 depicts some examples of the filtered
images from the Brandenburg Gate scene.

For quantitative evaluation, we form a test set by hand-
selecting photos representative of the qualities we intend to
replicate: well-focused and without occluders. While a naive
random selection of images may seem appropriate, image
comparison metrics such as PSNR, MS-SSIM, and LPIPS
are unable to ignore transient objects. Indeed, NeRF-W is
designed to generate images without such occluders, and
so will score poorly when evaluated on a reference image
that contains occluders. We therefore explicitly select pho-
tos without transient phenomena or extreme photometric
effects. Photos constituting the test set were chosen during
the preliminary experiments stage and held-out until the fi-
nal evaluation shown in Table 1. In particular, the chosen
photos were not used to guide model design or hyperparam-
eter search. See Table 2 for scene-specific statistics on this
dataset.

D. Lego Dataset
For a controlled ablation study, we construct variants of

the Lego dataset [25] inspired by effects we expect to find
in-the-wild (Table 3).

Color perturbations: To simulate variable lighting and
exposure, we apply a random scale and shift transfor-
mation to the RGB values of each image. In particu-
lar, we replace each training image Ii ∈ [0, 1]800×800×3

with Ĩi where, for each RGB color channel j, Ĩij =
min(1,max(0, sijIij + bij)) where scale sij ∼ U(0.8, 1.2)
and offset bij ∼ U(−0.2, 0.2) are sampled uniformly at ran-
dom for each i and j. Qualitatively, this results in variable
tint and brightness. We apply perturbations to all training
images except the first, whose appearance embedding is used
to render novel views. The top row of Figure 12 shows the

effect of applying random color perturbations to the same
image.

Occlusions: We simulate transient occluders by drawing
randomly-positioned and randomly-colored squares on each
training image. Each square consists of ten vertical, colored
stripes with colors chosen at random. Like transient occlud-
ers in the real world, these squares do not have a consistent
3D location from image to image. We again leave the first
training image untouched for reference. Figure 12 shows the
effect of adding occlusions randomly to the same view.

D.1. Experiments

For the Lego datasets, we optimize for 125,000 steps
on 4 GPUs, which takes approximately 8 hours. We use
the same NeRF hyperparameters reported by Mildenhall et
al. [25] for all NeRF variants. We optimize models on 100
images and evaluate on an additional 200, using the same
NeRF model hyperparameters presented in the original work.
Hyperparameters specific to NeRF-W (those not present in
NeRF) are tuned for each dataset variation via grid search.

Original: We begin by applying all methods to the origi-
nal, unperturbed Lego dataset. Quantitatively, we find that all
model variations perform similarly (Table 3). While NeRF
achieves slightly higher PSNR than all NeRF-W variants,
all other metrics suggest indistinguishable model quality.
We find that our implementation of NeRF performs slightly
better than the performance reported in the original NeRF
paper [25].

Color Perturbations: We find that this change alone de-
creases NeRF’s PSNR by approximately 10dB on average
(Table 3). As illustrated in Figure 13, NeRF is unable to
isolate image-dependent photometric effects from its shared
scene representation and thus entangles color variation with
viewing direction. NeRF-A and NeRF-W, on the other hand,
isolate tinting using the appearance embedding `(a). Novel

C
ol

or
s

O
cc

lu
de

rs

Figure 12: Examples of perturbations applied to the Lego dataset.
The top row shows various color perturbations applied to the same
view, whereas the bottom shows the effect of randomly adding
occluders to the same view.



views rendered with a fixed appearance embedding demon-
strate consistent color from all camera angles. Quantitatively,
we find both methods maintain almost identical metrics to
those achieved on the original dataset.

Occluders: As shown in Table 3, this variation reduces
NeRF’s PSNR by 14dB on average. To reduce training error,
NeRF and NeRF-A represent occluders as colored fog in
3D space, thereby causing the Lego figure to be obscured
(Figure 13). While latent appearance embeddings were not
designed to capture transient objects, we find that they enable
NeRF-A to reduce error by learning a radiance field that
imitates the color of the underlying 3D geometry. NeRF-A
and NeRF-W are better able to isolate transient occluders
from the static scene than their counterparts.

Color Perturbations and Occluders: When both color
and occluder perturbations are simultaneously enabled, we
observe a decrease in performance across all methods, with
NeRF-W outperforming all baselines. We further observe
significant variation in model accuracy for both NeRF and
NeRF-U across five random seeds. Both methods are poorly
equipped to cope with photometric effects and occasionally
fail to model the scene at all.



ORIGINAL COLOR PERTURBATIONS

↑ PSNR ↑ MS-SSIM ↓ LPIPS ↑ PSNR ↑ MS-SSIM ↓ LPIPS
NERF 33.35±0.05 0.989±0.000 0.019±0.000 23.38±0.05 0.964±0.001 0.076±0.001
NERF-A 33.04±0.06 0.989±0.000 0.020±0.000 30.66±1.38 0.983±0.007 0.031±0.015
NERF-U 33.07±0.27 0.989±0.001 0.019±0.001 24.87±0.52 0.968±0.000 0.063±0.007
NERF-W 32.89±0.14 0.989±0.000 0.020±0.001 31.51±0.28 0.987±0.001 0.022±0.001

OCCLUDERS COLORS PERTURBATIONS & OCCLUDERS

↑ PSNR ↑ MS-SSIM ↓ LPIPS ↑ PSNR ↑ MS-SSIM ↓ LPIPS
NERF 19.35±0.11 0.891±0.001 0.112±0.001 15.73±3.13 0.804±0.109 0.217±0.100
NERF-A 22.71±0.63 0.922±0.005 0.086±0.003 21.08±0.41 0.903±0.007 0.116±0.016
NERF-U 23.47±0.50 0.944±0.004 0.059±0.004 17.65±4.10 0.846±0.130 0.183±0.117
NERF-W 25.03±1.00 0.946±0.009 0.063±0.009 22.19±0.30 0.927±0.003 0.087±0.004

Table 3: Quantitative evaluation of NeRF and our proposed extensions on the synthetic Lego dataset. We report mean ± standard deviation
across 5 independent runs with different random initializations. Best and second best results are highlighted. On the ORIGINAL dataset, all
models perform near identically. NeRF fails to varying degrees on the perturbed datasets because it has no mechanism to account for those
perturbations. As expected, NeRF-U fails on COLORS, but improves over NeRF on OCCLUDERS. Likewise, NeRF-A performs well on
COLORS but fails on OCCLUDERS. NeRF-W is the only model that handles both types of perturbations.



O
ri

gi
na

l
C

ol
or

s
O

cc
lu

de
rs

C
ol

or
s

&
O

cc
lu

de
rs

Example perturbation NeRF NeRF-A NeRF-U NeRF-W

Figure 13: Example dataset perturbations and renderings from NeRF, NeRF-A, NeRF-U and NeRF-W. The leftmost column illustrates the
perturbations that were applied to the training dataset but using the test image for comparison. All other columns show renderings from
models trained on datasets with each corresponding perturbation. NeRF-A and NeRF-U are largely able to disentangle color and occluder
perturbations in isolation while NeRF-W is able to do so simultaneously. Render by Blender Swap user Heinzelnisse / CC BY.



B
ra

nd
en

bu
rg

G
at

e
Tr

ev
iF

ou
nt

ai
n

H
ag

ia
So

ph
ia

NRW NeRF NeRF-A NeRF-U NeRF-W Ground-truth

Figure 14: Further qualitative results from experiments on Phototourism dataset. NeRF-W is able to capture reflections (top row), consistent
scene geometry at a distance (middle), and eliminate transient occluders (bottom). Photos by Flickr users yatani, jingjing, lricecsp / CC BY.


