Appendix

We present the proof of Theorem 1 and Corollary 2 in App. A
followed by a review of bilevel optimization in App. B and
our attack algorithm in App. C. In App. D, we present the re-
sults of additional experiments on poisoning different classes
in the dataset, successful transferability of our poisoning
attack to deeper models, performance of the attack when
targeting a single test point and effect of using weight regu-
larization on the attack success. We conclude in App. E by
providing details of the hyperparameters and models archi-
tectures used in the experiments.

A. Proofs
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for the test data. (Certified radius is O for misclassified points
by definition.)
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Corollary 2. If the perturbation is large enough, i.e., € >
et S

% then the reduction in the ACR of the target

class, by poisoning an « portion (a € [0,1]) of the target

class, with maximum perturbation € using Eq. (3) is same

as that achieved by poisoning the entire target class with

€ = Q€.

Proof. To obtain the effect of poisoning an « portion
(v € [0,1]) of the target class, with maximum pertur-
bation €, we follow the proof of Theorem 1, with the
change that the solution to the lower-level problem is
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B. Review of bilevel optimization

A bilevel optimization problem is of the form
mingey §(u, v*) s.t. v* = argming,ey ) ((u,v), where
the upper-level problem is a minimization problem with v
constrained to be the optimal solution to the lower-level
problem. General bilevel problems are difficult to solve but
if the solution to the lower-level problem can be computed
in closed form then we can replace the lower-level problem
with its solution, reducing the bilevel problem into a single
level problem. We can then use the gradient-based meth-
ods to solve the single level problem. The total derivative
j—g (u, v*(u)) (hypergradient) using the chain rule is

de dv
T = Vb + Vot

Since V,¢ = 0 at v = v*(u) and assuming V2, ( is invert-
ible we can compute % using the implicit function theorem
(this can be done even if the solution to lower-level problem

can’t be found in closed form) which gives

dv
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Thus the hypergradient is
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Since computation of (V2,¢) ™! is difficult, [9, 27] proposed
to instead approximate the solution to ¢ = (V2,() "'V, £ by
approximately solving the linear system of equations V2, -
q =~ V€. This can be done by minimizing || V2, ¢-q— V&
using any iterative solver. Other methods for solving the
bilevel optimization problems include using forward/reverse
mode differentiation [10, 22, 30] to approximate the inverse
and penalty method [24] to solve the single level problem as
a constrained minimization problem.

C. Attack algorithm

Alg. 1 shows the complete algorithm used to generate
the poisoning attack when RS is used for certification and
models are trained using GA. The algorithm relies on Ap-
proxGrad (Alg. 2) to solve the bilevel optimization problem.
The upper-level cost is a differentiable function that approxi-
mates the certified radius of the hard smooth classifier using
a soft smooth classifier. The hyperparameter « is the inverse
temperature parameter of softmax. As a — oo, softmax
converges to argmax almost everywhere. As a result gg con-
verges to gy almost everywhere and thus soft randomized
smoothing converges to hard randomized smoothing almost
everywhere. Although, in this work we considered RS as
the procedure for certification (due to its scalability to large
models and datasets), any other certification procedure can

Algorithm 2 Algorithm for ApproxGrad
Input: &,(, M, T1,Ta, €, Upase, {Tm = 0.1},
{pm.t, = 0.001}, {Bpm., = 0.001}
Output: (ug)
Initialize g, vg randomly
Begin

form =20, --- ,M-1do

# Approximately solve the lower-level problem
fort =0,---,7T1-1do

Vi1 < UVt — Pty VUC
end for

# Approximately solve the linear system
# V’L2]’UC gk = V€
fort =0,---,T5-1do

qt+1 —qr — Bm,tzvq(”v%vc Gqm — Vuf”)
end for

# Compute the approximate Hypergradient
Pm = vu£ - V%WC 4Ty

# Update u,,, and use projection for the
# upper-level constraint
Um+1 = P(um — TmPm,; €, ubase)

end for

be used as the upper-level cost as long as its differentiable.
Moreover, Alg. 1 uses Lgaussaug in the lower-level to train
the model, but like the case with upper-level cost any other
loss function can be used to obtain the model parameters.
This flexibility of our method allows us to generate poison
data against MACER and SmoothAdyv using their loss func-
tions in the lower-level.

C.1. ApproxGrad

For an unconstrained bilevel problem of the form
min, &(u,v*) s.t. v* = argmin, ((u,v), if (u,v) is
strongly convex then we can replace the lower-level prob-
lem with its necessary condition for optimality and write
the bilevel problem as the following single level problem
min, £(u, v*) s.t. V,((u,v) = 0. Assuming V2 ( is in-
vertible everywhere we can compute the hypergradient at the
point (u, v*(u)) as % =Vu.&— V2 (V2,0)7IV,E

The ApproxGrad algorithm approximates the Hessian-
inverse vector product by approximately solving a system
of linear equation using an iterative solver such as gradient
descent or conjugate gradient method. In this work we use
Adam optimizer to solve this system. Since our problem
for data poisoning in Eq. (2) involves a constraint in the
upper-level we use projection to enforce the constraint. The



full algorithm for solving the bilevel optimization problem
using ApproxGrad is present in Alg. 2. For our attack the
lower-level problem involves a deep neural network, which
can have multiple local minima and thus optimizing against
a single local minima in the bilevel problem is not ideal.
To overcome this problem we reinitialize the lower-level
variable v after few upper-level iterations to prevent the poi-
soning points from overfitting to a particular local minima.
Empirically, this helps us find poisoning points that remain
effective even after the model is retrained from scratch mak-
ing them generalize to different initialization of the neural
network.

D. Additional experiments
D.1. Comparison with standard data poisoning

The standard data poisoning attack creates poison data
so that the accuracy of the victim’s model trained on it is
significantly lower than the accuracy attainable with training
on clean data. The bilevel optimization problem for this
attack is as follows.

Hbin ’Cstandard(Dval)
st dillec <€, i=1,..,n, and 4)
f* = arg m@in ‘CStandard (Dclean UDpoison; 9)

Here Lstandara(D;6) ﬁ Z(%yi)ep lee(xi,yi30),
where [, is the cross entropy loss. We used this formulation
to generate the poisoned dataset for reporting the results in
Table 1 with € = 0.1 for MNIST and e = 0.03 for CIFAR10.
The attack modifies all the points in the target classes. Specif-
ically, our attack targets misclassification of the digit 8 in
MNIST and class “Ship” in CIFAR10. The poisoned dataset
obtained after solving the bilevel optimization was then used
to train five models starting from random initializations with
different training procedures. The results of which are re-
ported in Table 1. As expected the models trained with
standard training on the poisoned data perform the worst
in terms of accuracy since the attack was optimized against
standard training. However, the generated poison data has
little to no effect when a training procedures that improves
certified adversarial robustness is used. This shows that the
effect of standard data poisoning can easily be nullified if
a victim trains the model with a these training procedures.
This gives a false sense of security of the models trained with
certified defenses to data poisoning attacks. Thus, in this
work we study the effect of poisoning on training procedures
meant to improve certified adversarial robustness and show
that their guarantees become meaningless when the dataset
is poisoned.

Table 6. Degradation of certified adversarial robustness of logistic
regression trained with GA on a toy 2-isotropic Gaussians dataset.

Certified Robustness on | Certified Robustness on
o clean data poisoned data
ACR ACA(%) ACR ACA(%)
0.25 | 0.4047 90.00 0.3585 88.00
0.50 | 0.4139 90.00 0.3587 87.60
0.75 | 0.4123 90.00 0.3544 87.60

D.2. Isotropic Gaussians

Here we validate the solution found by solving the bilevel
optimization against the analytical solution of a toy prob-
lem. Consider a two-dimensional dataset comprising of
points drawn from two isotropic Gaussian distributions.
Let P(xly = —1)) = N(u1,02I) and P(zly = 1) =
N (uz2,0%T) and equal prior P(y = 1) = P(y = —1). For
a point z, the Bayes optimal classifier predicts y = 1 if
P(y = 1|z) >= P(y = —1|x) and predicts y = —1 other-
wise. The decision boundary of the Bayes optimal classifier
is given by (x — pa)T(x — p1) = (x — p2)T(x — p2).
This is also the decision boundary of the smoothed clas-
sifier. Assuming the attacker is poisoning the class with
label —1 and maximum permissible distortion is €, our anal-
ysis showed that maximum reduction in radius occurs if
the entire distribution shifts by ¢ i.e. the new mean of the
class with label -1 is u; — € and the decision boundary is
(x — (1 — )T (x — (11 — ) = (x — j2)T(x — ji2).
Since the test distribution is unchanged, the ACR for the
test points with labels -1 is reduced by % Using p; =
0.2, ue = 0.8,01 = 02 = 0.3,¢ = 0.1 and using logistic
regression in the lower-level, analytically the certified radius
must decrease from 0.4243 to 0.3546. The solution by solv-
ing the bilevel optimization numerically (Table 6) matches
the analytic solution.

D.3. Targeting other classes

In this section we present the results of our poisoning
attack on different target classes where the models are trained
using GA during poison generation and evaluation. Since
MNIST and CIFAR10 both have 10 classes we create 10
poisoning sets each targeting a particular class. The results of
retraining models from five random initializations on each of
the 10 poisoning sets are summarized in Fig. 6. Reduction in
average certified radius for all classes shows that an attacker
can generate poison data to affect any class in the dataset.

D.4. Transferability to different architectures

Here we present the results of transferability of the poi-
soned data generated against Resnet-20 targeting the class
“Ship” to bigger models. In particular we present the results
on Resnet-56 and Resnet-110 [14] models in Fig. 7. As
seen from the results the poisoned data generated against
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(a) Clean data (odd numbered rows) and poisoned data generated by our
attack (even numbered rows) for all digits in MNIST

=

(b) Clean data (odd numbered rows) and poisoned data generated by our
attack (even numbered rows) for all classes of CIFAR10

Figure 5. Imperceptibly distorted poison data generated by our algorithm against Gaussian augmented training which causes a significant
reduction in the certified robustness guarantees of the models. The average certified radius and certified accuracy of models trained on clean

and poisoned data are reported in App. D.3 and Fig. 6.

Resnet-20 is successful in reducing the certified radius of
the target class even if the victim uses a larger model. We
report the results of training the models on clean and poi-
soned data starting from three random initializations and
certify using 500 randomly sampled points of the target class
from the clean test set. Our results suggest that the poisoned
data generated using our procedure are agnostic to the train-
ing procedure (Fig. 4), model (Fig. 7) and metric (RS or
empirical robustness) used by the victim during evaluation
highlighting the threat of data poisoning.

D.5. Effect of weight regularization

Previous works [6] have shown weight regularization to
mitigate the effect of data poisoning attacks. Here, we evalu-
ate the attack success when using different coefficients for
weight regularization in standard and GA training. Results in
Table 7 show that our attack significantly reduces the ACR of
models, especially those trained without GA or weight regu-
larization. Similar to previous works [6], we see that models
trained with large regularization (without GA) are difficult to
poison. This increased robustness, however comes at the cost
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Figure 6. Successful poisoning attack against all classes in MNIST and CIFAR10 dataset.

0.8
0.7
B
5 0.6
P
- 0.5
2
£ 04
S
®» 03
o
g 02
) 8
>
<
0'1 ' '
0.0
Resnet 20 Resnet56 Resnet 110
Models

(a) Average certified radius of class “Ship” in CIFAR10

0.8
Z 07
e
2 06
v
<
E 0.5
&
£ 04
Q
[¥]
g 03
]
5 0.2
o
g 0.1
o
<

0.0

Resnet 20 Resnet56 Resnet 110
Models

(b) Approximate certified accuracy of class “Ship” in CIFAR10

[ Clean data [l Poisoned data
Figure 7. Successful transferability of poisoning attack against deeper models. The poison data is optimized against Resnet-20. GA with

o = 0.5 is used for poison generation and evaluation.

of accuracy (target class accuracy of models trained with

clean data drops from 99% to 92%), suggesting a trade-off.

On the other hand, for models trained with GA, using large
regularization leads to a significant drop in their certified
robustness guarantees, even without poisoning (ACR for
models trained on clean data drops from 1.48 to 0.85), there

by making large regularization undesirable to use with GA.

This shows that our attack remains quite effective even when
different amounts of weight regularization are used during
model retraining.

D.6. Attack success by poisoning 1% of the data

Similar to [16], where the effect of poisoning 1% of the
training data is evaluated on a single test point, we randomly



Table 7. Effect of weight regularization and Gaussian data augmen-
tation (0=0.5) on ACR of digit 8 of MNIST (e=0.1). Mean and s.d.
of 3 random initializations. Bold entries are reported in Table 2.

Training | Data | NoReg. | 1E-4 | 1B2 | 1Bl

Without | Clean | 0.95+0.10 | 0.89+0.06 | 0.87+0.11 | 0.8240.04
GA | Poisoned | 0.010.01 | 0.03+0.05 | 0.374+0.06 | 0.68+0.05
With Clean | 1.48+0.02 | 1.4920.03 | 1.2940.15 | 0.8540.09
GA | Poisoned | 0.73+0.10 | 0.62+0.02 | 0.58+0.11 | 0.7240.08

select 5 test images of the bird class and generate poison data
to reduce their certified radius individually. Using Alg. 1,
we poison 500 bird images (1% of CIFAR10) closest to the
target, with €=0.06. Using 3 randomly initialized models
trained with GA, our attack can reduce the certified radius
of 5 targets from 0.63 to 0.26 on average.

E. Details of the experiments

All codes are written in Python using Tensorflow/Keras,
and were run on Intel Xeon(R) W-2123 CPU with 64 GB of
RAM and dual NVIDIA TITAN RTX. Implementation and
hyperparameters are described below.

E.1. Data splits

For MNIST, we use 55000 points as the training data and
5000 points for validation data. We have roughly 500 points
belonging to the target class in the validation set which is
used in the upper-level problem of the bilevel optimization
presented in Eq. (1). For CIFAR10, we use 45000 points as
the training data and 5000 points for validation data. Similar
to MNIST we have roughly 500 points belonging to the
target class in the validation set. The test sets of both the
datasets comprises of 10000 points. We use 500 randomly
sampled points of the target class from the test set to report
the results of certified and empirical robustness of the models
trained on clean and poisoned data.

E.2. Model Architecture

For the experiments on the MNIST dataset, our network
consists of a convolution layer with kernel size of 5x5, 20
filters and ReLLU activation, followed by a max pooling layer
of size 2x2. This is followed by another convolution layer
with 5x5 kernel, 50 filters and ReLU activation followed by
similar max pooling and dropout layers. Then we have a fully
connected layers with ReLU activation of size 500. Lastly,
we have a softmax layer with 10 classes. The accuracy of
the model on clean data when optimized with the Adam
optimizer using a learning rate of 0.001 for 100 epochs with
batch size of 200 is 99.3% (without GA). For the experiments
on the CIFAR10 dataset, we use the Resnet-20 model. The
accuracy of the model on clean data when optimized with the
Adam optimizer using a learning rate of 0.001 for 100 epochs
with batch size of 200 is 85% (without GA). For all CIFAR10
experiments except for the experiments with SmoothAdv, we

trained the models using data augmentation (random flipping
and random cropping). We used the same parameters for
training the models with different robust training procedures
on clean and poisoned data.

E.3. Hyperparameters

For experiments with MNIST we used ¢ = 0.1, K =
20, = 16. The batch size used for lower-level training
was 1000, of which 100 points belonged to the poisoned
set (target class). The batch size for validation set was 100
which only consisted of points from the target class. The
lower-level was trained using different training procedures
on clean and poisoned data. For experiments with CIFAR10
we used € = 0.03, A\ = 0.06, M = 20, = 16. The batch
size used for lower-level training was 200, of which 20 points
belonged to the poisoned set (target class). The batch size for
validation set was 20 which only consisted of points from the
target class. For training with GA the lower-level is trained
with a single noisy image of the clean and poisoned dataset.
The same setting is used while retraining. For generating
poison data against MACER the lower-level is trained with
K = 2,A = 1,7 = 8. During retraining, K = 16,\ =
16, = 8 are used for MNIST. For CIFAR10, we use K =
16,y =8 and A = 12 for 0 = 0.25 and A = 4 for ¢ = 0.5.
The hyperparameters during retraining are similar to the ones
used in the original work. For Smoothadv, £ = 1 and 2-step
PGD attack are used to generate adversarial examples of the
smooth classifier. These adversarial examples along with GA
are used to do adversarial training during poison generation
and retraining.

In our experiments with generating poisoned data against
GA and MACER we used P = 50,71 = 15 = 10,7 =
0.1,p = 0.001,3 = 0.01 for ApproxGrad. We used all
the same hyperparameters for SmoothAdv except 77 = 1.
For certification we used the CERTIFY procedure of [8],
with ng = 100,n = 100000, « = 0.001. For measuring
empirical robustness of the smoothed classifier, we used the
mean ¢y distortion required by PGD attack to generate an
adversarial example as done in [29]. The attack is optimized
for 100 iterations for different values of /5 distortion between
(0.01, 10). We used 20 augmentations for each test point
of MNIST and 10 for CIFAR10. To report the results for
empirical robustness we record the minimum distortion for
a successful attack for each test point.

For the watermarking baseline, we randomly selected an
image (other) from the classes other than the target class and
over-layed them on top of the target class images (base) with
an opacity of v = 0.1 1i.e. (poison_image = ~y-other+(1—
) - base). We then clip the images to have /., distortion of e
to make our bilevel attack comparable in terms of maximum
distortion.



