
Appendix

We present the proof of Theorem 1 and Corollary 2 in App. A

followed by a review of bilevel optimization in App. B and

our attack algorithm in App. C. In App. D, we present the re-

sults of additional experiments on poisoning different classes

in the dataset, successful transferability of our poisoning

attack to deeper models, performance of the attack when

targeting a single test point and effect of using weight regu-

larization on the attack success. We conclude in App. E by

providing details of the hyperparameters and models archi-

tectures used in the experiments.

A. Proofs

Theorem 1. If the perturbation is large enough, i.e., ǫ ≥
∑

i x
+
i −∑

i x
−
i

n
then there are two locally optimal solutions to

(3) which are ui = x−
i −ǫ (Case 1) and ui = x−

i +ǫ (Case 2)

for i = 1, ..., n. Otherwise, the is a unique globally optimal

solution which is ui = x−
i − ǫ (Case 1) for i = 1, ..., n.

Proof. Let t = − b
w

be the threshold of the linear clas-

sifier. Also let Φ(t) :=
∫ t

−∞ P−(x) dx and Ψ(t) :=
∫ t

−∞ xP−(x) dx. There are two cases to consider.

Case 1 (w > 0): The upper-level cost function is

f(t) =

∫ t

−∞
(t− x)P−(x) dx = tΦ(t)−Ψ(t)

Note that the range [−∞, t] is where classification is correct

for the test data. (Certified radius is 0 for misclassified points

by definition.)

The closed-from solution of the lower-level problem gives

us t = − b
w
=

∑
i ui+

∑
i x

+
i

2n , and therefore the perturbation

bound |ui − x−
i | ≤ ǫ implies

∑

i x
−
i − nǫ ≤

∑

i ui ≤
∑

i x
−
i + nǫ and therefore

−
ǫ

2
+

∑

i x
+
i +

∑

i x
−
i

2n
≤ t ≤

ǫ

2
+

∑

i x
+
i +

∑

i x
−
i

2n
.

Also, the assumption w > 0 poses another constraint:

w ∝
∑

i x
+
i −

∑

i ui > 0 and therefore

t =
∑

i ui+
∑

i x
+
i

2n ≤
∑

i x
+
i

n
. The upper-level problem is

therefore

min
t

f(t) = tΦ(t)−Ψ(t) s.t.

−
ǫ

2
+

∑

i x
+
i +

∑

i x
−
i

2n
≤ t ≤

ǫ

2
+

∑

i x
+
i +

∑

i x
−
i

2n

and t ≤

∑

i x
+
i

n
.

Since f is non-decreasing (i.e.,f ′(t) = Φ(t) + tP−(t) −
tP−(t) ≥ 0), the minimum is achieved at the left-most

boundary t = − ǫ
2 +

∑
i x

+
i +

∑
i x

−
i

2n which corresponds to

ui = x−
i − ǫ, i = 1, ..., n.

Case 2 (w < 0): The upper-level cost function is now

f(t) =

∫ ∞

t

(−t+x)P−(x) dx = −t(1−Φ(t))+(1−Ψ(t)),

which is non-increasing (i.e., f ′(t) = −(1 − Φ) + tP− −
tP− ≤ 0) and has the constraints:

−
ǫ

2
+

∑

i x
+
i +

∑

i x
−
i

2n
≤ t ≤

ǫ

2
+

∑

i x
+
i +

∑

i x
−
i

2n
.

and

t =

∑

i ui +
∑

i x
+
i

2n
≥

∑

i x
+
i

n
.

For the solution to be feasible, it is required that
∑

i x
+
i

n
≤

ǫ
2 +

∑
i x

+
i +

∑
i x

−
i

2n , that is ǫ
2 ≥

∑
i x

+
i −∑

i x
−
i

2n (remember

the assumption
∑

i x
−
i

n
≤

∑
i x

+
i

n
). Therefore if the per-

turbation is large enough, i.e., ǫ ≥
∑

i x
+
i −∑

i x
−
i

n
holds,

then the minimum is achieved at the right-most bound-

ary t = ǫ
2 +

∑
i x

+
i +

∑
i x

−
i

2n which corresponds to ui =

x−
i + ǫ, i = 1, ..., n.

Corollary 2. If the perturbation is large enough, i.e., ǫ ≥
∑

i x
+
i −∑

i x
−
i

n
then the reduction in the ACR of the target

class, by poisoning an α portion (α ∈ [0, 1]) of the target

class, with maximum perturbation ǫ̃ using Eq. (3) is same

as that achieved by poisoning the entire target class with

ǫ = αǫ̃.

Proof. To obtain the effect of poisoning an α portion

(α ∈ [0, 1]) of the target class, with maximum pertur-

bation ǫ̃, we follow the proof of Theorem 1, with the

change that the solution to the lower-level problem is

t = − b
w
=

∑αn
i=0 ui+

∑(1−α)n
i=0 x−

i +
∑

i x
+
i

2n .

Thus the solutions to the upper-level problem are

t = −αǫ̃
2 +

∑
i x

+
i +

∑αn
i=0 x−

i +
∑(1−α)n

i=0 x−
i

2n which corresponds

to ui = x−
i − ǫ̃, i = 1, ..., αn for Case 1 and

t = αǫ̃
2 +

∑
i x

+
i +

∑αn
i=0 x

−
i +

∑(1−α)n
i=0 x

−
i

2n which corre-

sponds to ui = x−
i + ǫ̃, i = 1, ..., αn for Case 2.

The decision boundaries

t = −αǫ̃
2 +

∑
i x

+
i +

∑
i x

−
i

2n for Case 1 and

t = αǫ̃
2 +

∑
i x

+
i +

∑
i x

−
i

2n for Case 2 are the same

boundaries as obtained by poisoning all points from the

target class (x−
i) with ǫ = αǫ̃

B. Review of bilevel optimization

A bilevel optimization problem is of the form

minu∈U ξ(u, v∗) s.t. v∗ = argminv∈V(u) ζ(u, v), where

the upper-level problem is a minimization problem with v
constrained to be the optimal solution to the lower-level

problem. General bilevel problems are difficult to solve but

if the solution to the lower-level problem can be computed

in closed form then we can replace the lower-level problem

with its solution, reducing the bilevel problem into a single

level problem. We can then use the gradient-based meth-

ods to solve the single level problem. The total derivative
dξ
du

(u, v∗(u)) (hypergradient) using the chain rule is

dξ

du
= ∇uξ +

dv

du
· ∇vξ.

Since ∇vζ = 0 at v = v∗(u) and assuming ∇2
vvζ is invert-

ible we can compute dv
du

using the implicit function theorem

(this can be done even if the solution to lower-level problem

can’t be found in closed form) which gives

dv

du
= −∇2

uvζ(∇
2
vvζ)

−1.

Thus the hypergradient is

dξ

du
= ∇uξ −∇

2
uvζ(∇

2
vvζ)

−1∇vξ at (u, v∗(u)).

Since computation of (∇2
vvζ)

−1 is difficult, [9, 27] proposed

to instead approximate the solution to q = (∇2
vvζ)

−1∇vξ by

approximately solving the linear system of equations ∇2
vv ·

q ≈ ∇vξ. This can be done by minimizing ‖∇2
vvζ ·q−∇vξ‖

using any iterative solver. Other methods for solving the

bilevel optimization problems include using forward/reverse

mode differentiation [10, 22, 30] to approximate the inverse

and penalty method [24] to solve the single level problem as

a constrained minimization problem.

C. Attack algorithm

Alg. 1 shows the complete algorithm used to generate

the poisoning attack when RS is used for certification and

models are trained using GA. The algorithm relies on Ap-

proxGrad (Alg. 2) to solve the bilevel optimization problem.

The upper-level cost is a differentiable function that approxi-

mates the certified radius of the hard smooth classifier using

a soft smooth classifier. The hyperparameter α is the inverse

temperature parameter of softmax. As α → ∞, softmax

converges to argmax almost everywhere. As a result g̃θ con-

verges to gθ almost everywhere and thus soft randomized

smoothing converges to hard randomized smoothing almost

everywhere. Although, in this work we considered RS as

the procedure for certification (due to its scalability to large

models and datasets), any other certification procedure can

Algorithm 2 Algorithm for ApproxGrad

Input: ξ, ζ,M, T1, T2, ǫ, ubase, {τm = 0.1},
{ρm,t1 = 0.001}, {βm,t2 = 0.001}
Output: (uK)
Initialize u0, v0 randomly

Begin

for m = 0, · · · ,M -1 do

Approximately solve the lower-level problem

for t = 0, · · · , T1-1 do

vt+1 ← vt − ρm,t1∇vζ
end for

Approximately solve the linear system

∇2
vvζ · qk = ∇vξ

for t = 0, · · · , T2-1 do

qt+1 ← qt − βm,t2∇q(‖∇
2
vvζ · qm −∇vξ‖)

end for

Compute the approximate Hypergradient

pm = ∇uξ −∇
2
uvζ · qT2

Update um and use projection for the

upper-level constraint

um+1 = P (um − τmpm, ǫ, ubase)

end for

be used as the upper-level cost as long as its differentiable.

Moreover, Alg. 1 uses LGaussAug in the lower-level to train

the model, but like the case with upper-level cost any other

loss function can be used to obtain the model parameters.

This flexibility of our method allows us to generate poison

data against MACER and SmoothAdv using their loss func-

tions in the lower-level.

C.1. ApproxGrad

For an unconstrained bilevel problem of the form

minu ξ(u, v
∗) s.t. v∗ = argminv ζ(u, v), if ζ(u, v) is

strongly convex then we can replace the lower-level prob-

lem with its necessary condition for optimality and write

the bilevel problem as the following single level problem

minu ξ(u, v
∗) s.t. ∇vζ(u, v) = 0. Assuming ∇2

vvζ is in-

vertible everywhere we can compute the hypergradient at the

point (u, v∗(u)) as dξ
du

= ∇uξ −∇
2
uvζ(∇

2
vvζ)

−1∇vξ.

The ApproxGrad algorithm approximates the Hessian-

inverse vector product by approximately solving a system

of linear equation using an iterative solver such as gradient

descent or conjugate gradient method. In this work we use

Adam optimizer to solve this system. Since our problem

for data poisoning in Eq. (2) involves a constraint in the

upper-level we use projection to enforce the constraint. The

full algorithm for solving the bilevel optimization problem

using ApproxGrad is present in Alg. 2. For our attack the

lower-level problem involves a deep neural network, which

can have multiple local minima and thus optimizing against

a single local minima in the bilevel problem is not ideal.

To overcome this problem we reinitialize the lower-level

variable v after few upper-level iterations to prevent the poi-

soning points from overfitting to a particular local minima.

Empirically, this helps us find poisoning points that remain

effective even after the model is retrained from scratch mak-

ing them generalize to different initialization of the neural

network.

D. Additional experiments

D.1. Comparison with standard data poisoning

The standard data poisoning attack creates poison data

so that the accuracy of the victim’s model trained on it is

significantly lower than the accuracy attainable with training

on clean data. The bilevel optimization problem for this

attack is as follows.

min
u
Lstandard(D

val)

s.t. ‖δi‖∞ ≤ ǫ, i = 1, ..., n, and

θ∗ = argmin
θ
Lstandard(D

clean
⋃

Dpoison; θ).

(4)

Here Lstandard(D; θ) = 1
|D|

∑

(xi,yi)∈D lce(xi, yi; θ),

where lce is the cross entropy loss. We used this formulation

to generate the poisoned dataset for reporting the results in

Table 1 with ǫ = 0.1 for MNIST and ǫ = 0.03 for CIFAR10.

The attack modifies all the points in the target classes. Specif-

ically, our attack targets misclassification of the digit 8 in

MNIST and class “Ship” in CIFAR10. The poisoned dataset

obtained after solving the bilevel optimization was then used

to train five models starting from random initializations with

different training procedures. The results of which are re-

ported in Table 1. As expected the models trained with

standard training on the poisoned data perform the worst

in terms of accuracy since the attack was optimized against

standard training. However, the generated poison data has

little to no effect when a training procedures that improves

certified adversarial robustness is used. This shows that the

effect of standard data poisoning can easily be nullified if

a victim trains the model with a these training procedures.

This gives a false sense of security of the models trained with

certified defenses to data poisoning attacks. Thus, in this

work we study the effect of poisoning on training procedures

meant to improve certified adversarial robustness and show

that their guarantees become meaningless when the dataset

is poisoned.

Table 6. Degradation of certified adversarial robustness of logistic

regression trained with GA on a toy 2-isotropic Gaussians dataset.

σ

Certified Robustness on

clean data

Certified Robustness on

poisoned data

ACR ACA(%) ACR ACA(%)

0.25 0.4047 90.00 0.3585 88.00

0.50 0.4139 90.00 0.3587 87.60

0.75 0.4123 90.00 0.3544 87.60

D.2. Isotropic Gaussians

Here we validate the solution found by solving the bilevel

optimization against the analytical solution of a toy prob-

lem. Consider a two-dimensional dataset comprising of

points drawn from two isotropic Gaussian distributions.

Let P(x|y = −1)) = N (µ1, σ
2I) and P(x|y = 1) =

N (µ2, σ
2I) and equal prior P(y = 1) = P(y = −1). For

a point x, the Bayes optimal classifier predicts y = 1 if

P(y = 1|x) >= P(y = −1|x) and predicts y = −1 other-

wise. The decision boundary of the Bayes optimal classifier

is given by (x − µ1)
T(x − µ1) = (x − µ2)

T(x − µ2).
This is also the decision boundary of the smoothed clas-

sifier. Assuming the attacker is poisoning the class with

label −1 and maximum permissible distortion is ǫ, our anal-

ysis showed that maximum reduction in radius occurs if

the entire distribution shifts by ǫ i.e. the new mean of the

class with label -1 is µ1 − ǫ and the decision boundary is

(x − (µ1 − ǫ))T(x − (µ1 − ǫ)) = (x − µ2)
T(x − µ2).

Since the test distribution is unchanged, the ACR for the

test points with labels -1 is reduced by ǫ√
2

. Using µ1 =

0.2, µ2 = 0.8, σ1 = σ2 = 0.3, ǫ = 0.1 and using logistic

regression in the lower-level, analytically the certified radius

must decrease from 0.4243 to 0.3546. The solution by solv-

ing the bilevel optimization numerically (Table 6) matches

the analytic solution.

D.3. Targeting other classes

In this section we present the results of our poisoning

attack on different target classes where the models are trained

using GA during poison generation and evaluation. Since

MNIST and CIFAR10 both have 10 classes we create 10

poisoning sets each targeting a particular class. The results of

retraining models from five random initializations on each of

the 10 poisoning sets are summarized in Fig. 6. Reduction in

average certified radius for all classes shows that an attacker

can generate poison data to affect any class in the dataset.

D.4. Transferability to different architectures

Here we present the results of transferability of the poi-

soned data generated against Resnet-20 targeting the class

“Ship” to bigger models. In particular we present the results

on Resnet-56 and Resnet-110 [14] models in Fig. 7. As

seen from the results the poisoned data generated against

(a) Clean data (odd numbered rows) and poisoned data generated by our

attack (even numbered rows) for all digits in MNIST

(b) Clean data (odd numbered rows) and poisoned data generated by our

attack (even numbered rows) for all classes of CIFAR10

Figure 5. Imperceptibly distorted poison data generated by our algorithm against Gaussian augmented training which causes a significant

reduction in the certified robustness guarantees of the models. The average certified radius and certified accuracy of models trained on clean

and poisoned data are reported in App. D.3 and Fig. 6.

Resnet-20 is successful in reducing the certified radius of

the target class even if the victim uses a larger model. We

report the results of training the models on clean and poi-

soned data starting from three random initializations and

certify using 500 randomly sampled points of the target class

from the clean test set. Our results suggest that the poisoned

data generated using our procedure are agnostic to the train-

ing procedure (Fig. 4), model (Fig. 7) and metric (RS or

empirical robustness) used by the victim during evaluation

highlighting the threat of data poisoning.

D.5. Effect of weight regularization

Previous works [6] have shown weight regularization to

mitigate the effect of data poisoning attacks. Here, we evalu-

ate the attack success when using different coefficients for

weight regularization in standard and GA training. Results in

Table 7 show that our attack significantly reduces the ACR of

models, especially those trained without GA or weight regu-

larization. Similar to previous works [6], we see that models

trained with large regularization (without GA) are difficult to

poison. This increased robustness, however comes at the cost

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

0 1 2 3 4 5 6 7 8 9

A
v
e
ra

g
e
 C

e
rt

if
ie

d
 R

a
d

iu
s

Digit in MNIST

(a) Average certified radius of all digits in MNIST

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 1 2 3 4 5 6 7 8 9

A
p

p
ro

x
im

a
te

 C
e
rt

if
ie

d
 A

cc
u

ra
cy

Digit in MNIST

(b) Approximate certified accuracy of all digits in MNIST

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 1 2 3 4 5 6 7 8 9

A
v
e
ra

g
e
 C

e
rt

if
ie

d
 R

a
d

iu
s

Class in CIFAR10

(c) Average certified radius of all classes in CIFAR10

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 1 2 3 4 5 6 7 8 9

A
p

p
ro

x
im

a
te

 C
e
rt

if
ie

d
 A

cc
u

ra
cy

Class in CIFAR10

(d) Approximate certified accuracy of all classes in CIFAR10

Clean data Poisoned data

Figure 6. Successful poisoning attack against all classes in MNIST and CIFAR10 dataset.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Resnet 20 Resnet56 Resnet 110

A
v
e
ra

g
e
 C

e
rt

if
ie

d
 R

a
d

iu
s

Models

(a) Average certified radius of class “Ship” in CIFAR10

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Resnet 20 Resnet56 Resnet 110

A
p

p
ro

x
im

a
te

 C
e
rt

if
ie

d
 A

cc
u

ra
cy

Models

(b) Approximate certified accuracy of class “Ship” in CIFAR10

Clean data Poisoned data

Figure 7. Successful transferability of poisoning attack against deeper models. The poison data is optimized against Resnet-20. GA with

σ = 0.5 is used for poison generation and evaluation.

of accuracy (target class accuracy of models trained with

clean data drops from 99% to 92%), suggesting a trade-off.

On the other hand, for models trained with GA, using large

regularization leads to a significant drop in their certified

robustness guarantees, even without poisoning (ACR for

models trained on clean data drops from 1.48 to 0.85), there

by making large regularization undesirable to use with GA.

This shows that our attack remains quite effective even when

different amounts of weight regularization are used during

model retraining.

D.6. Attack success by poisoning 1% of the data

Similar to [16], where the effect of poisoning 1% of the

training data is evaluated on a single test point, we randomly

Table 7. Effect of weight regularization and Gaussian data augmen-

tation (σ=0.5) on ACR of digit 8 of MNIST (ǫ=0.1). Mean and s.d.

of 3 random initializations. Bold entries are reported in Table 2.

Training Data No Reg. 1E-4 1E-2 1E-1

Without

GA

Clean 0.95±0.10 0.89±0.06 0.87±0.11 0.82±0.04

Poisoned 0.01±0.01 0.03±0.05 0.37±0.06 0.68±0.05

With

GA

Clean 1.48±0.02 1.49±0.03 1.29±0.15 0.85±0.09

Poisoned 0.73±0.10 0.62±0.02 0.58±0.11 0.72±0.08

select 5 test images of the bird class and generate poison data

to reduce their certified radius individually. Using Alg. 1,

we poison 500 bird images (1% of CIFAR10) closest to the

target, with ǫ=0.06. Using 3 randomly initialized models

trained with GA, our attack can reduce the certified radius

of 5 targets from 0.63 to 0.26 on average.

E. Details of the experiments

All codes are written in Python using Tensorflow/Keras,

and were run on Intel Xeon(R) W-2123 CPU with 64 GB of

RAM and dual NVIDIA TITAN RTX. Implementation and

hyperparameters are described below.

E.1. Data splits

For MNIST, we use 55000 points as the training data and

5000 points for validation data. We have roughly 500 points

belonging to the target class in the validation set which is

used in the upper-level problem of the bilevel optimization

presented in Eq. (1). For CIFAR10, we use 45000 points as

the training data and 5000 points for validation data. Similar

to MNIST we have roughly 500 points belonging to the

target class in the validation set. The test sets of both the

datasets comprises of 10000 points. We use 500 randomly

sampled points of the target class from the test set to report

the results of certified and empirical robustness of the models

trained on clean and poisoned data.

E.2. Model Architecture

For the experiments on the MNIST dataset, our network

consists of a convolution layer with kernel size of 5x5, 20

filters and ReLU activation, followed by a max pooling layer

of size 2x2. This is followed by another convolution layer

with 5x5 kernel, 50 filters and ReLU activation followed by

similar max pooling and dropout layers. Then we have a fully

connected layers with ReLU activation of size 500. Lastly,

we have a softmax layer with 10 classes. The accuracy of

the model on clean data when optimized with the Adam

optimizer using a learning rate of 0.001 for 100 epochs with

batch size of 200 is 99.3% (without GA). For the experiments

on the CIFAR10 dataset, we use the Resnet-20 model. The

accuracy of the model on clean data when optimized with the

Adam optimizer using a learning rate of 0.001 for 100 epochs

with batch size of 200 is 85% (without GA). For all CIFAR10

experiments except for the experiments with SmoothAdv, we

trained the models using data augmentation (random flipping

and random cropping). We used the same parameters for

training the models with different robust training procedures

on clean and poisoned data.

E.3. Hyperparameters

For experiments with MNIST we used ǫ = 0.1,K =
20, α = 16. The batch size used for lower-level training

was 1000, of which 100 points belonged to the poisoned

set (target class). The batch size for validation set was 100

which only consisted of points from the target class. The

lower-level was trained using different training procedures

on clean and poisoned data. For experiments with CIFAR10

we used ǫ = 0.03, λ = 0.06,M = 20, α = 16. The batch

size used for lower-level training was 200, of which 20 points

belonged to the poisoned set (target class). The batch size for

validation set was 20 which only consisted of points from the

target class. For training with GA the lower-level is trained

with a single noisy image of the clean and poisoned dataset.

The same setting is used while retraining. For generating

poison data against MACER the lower-level is trained with

K = 2, λ = 1, γ = 8. During retraining, K = 16, λ =
16, γ = 8 are used for MNIST. For CIFAR10, we use K =
16, γ = 8 and λ = 12 for σ = 0.25 and λ = 4 for σ = 0.5.

The hyperparameters during retraining are similar to the ones

used in the original work. For Smoothadv, k = 1 and 2-step

PGD attack are used to generate adversarial examples of the

smooth classifier. These adversarial examples along with GA

are used to do adversarial training during poison generation

and retraining.

In our experiments with generating poisoned data against

GA and MACER we used P = 50, T1 = T2 = 10, τ =
0.1, ρ = 0.001, β = 0.01 for ApproxGrad. We used all

the same hyperparameters for SmoothAdv except T1 = 1.

For certification we used the CERTIFY procedure of [8],

with n0 = 100, n = 100000, α = 0.001. For measuring

empirical robustness of the smoothed classifier, we used the

mean ℓ2 distortion required by PGD attack to generate an

adversarial example as done in [29]. The attack is optimized

for 100 iterations for different values of ℓ2 distortion between

(0.01, 10). We used 20 augmentations for each test point

of MNIST and 10 for CIFAR10. To report the results for

empirical robustness we record the minimum distortion for

a successful attack for each test point.

For the watermarking baseline, we randomly selected an

image (other) from the classes other than the target class and

over-layed them on top of the target class images (base) with

an opacity of γ = 0.1 i.e. (poison_image = γ ·other+(1−
γ) ·base). We then clip the images to have ℓ∞ distortion of ǫ
to make our bilevel attack comparable in terms of maximum

distortion.

