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1. Overview
In this supplementary, we first give the mathematical definitions of the metrics used in the quantitative comparison in

Section 2. Then, we show more statistics and examples of our constructed RGBD-Mirror dataset in Section 3. Finally, we
present more visual comparison results of our PDNet against state-of-the-art segmentation methods in Section 4.

2. Evaluation Metrics
For a comprehensive evaluation, we adopt four widely used metrics for quantitatively assessing the mirror segmentation

performance: intersection over union (IoU ), weighted F-measure (Fwβ ) [11], mean absolute error (MAE), and balance error
rate (BER) [14].

The intersection over union (IoU ) is widely used in the segmentation field, which is defined as:

IoU =

H∑
i=1

W∑
j=1

(G(i, j) ∗ Pb(i, j))

H∑
i=1

W∑
j=1

(G(i, j) + Pb(i, j)−G(i, j) ∗ Pb(i, j))
, (1)

where G is the ground truth mask in which the values of the mirror region are 1 while those of the non-mirror region are 0;
Pb is the predicted mask binarized with a threshold of 0.5; and H and W are the height and width of the ground truth mask,
respectively.

We also adopt the weighted F-measure metric from the salient object detection field. F-measure (Fβ) is a comprehensive
measure on both the precision and recall of the prediction map. Recent studies [2, 3] have suggested that the weighted F-
measure (Fwβ ) [11] can provide more reliable evaluation results than the traditional Fβ . Thus, we report Fwβ in the comparison.

The mean absolute error (MAE) metric is widely used in foreground-background segmentation tasks, which calculates
the element-wise difference between the prediction map P and the ground truth mask G:

MAE =
1

H ×W

H∑
i=1

W∑
j=1

|P (i, j)−G(i, j)|, (2)

where P (i, j) indicates the predicted probability score at location (i, j).
The last metric is the balance error rate (BER), which is a standard metric in the shadow detection field, defined as:

BER = (1− 1

2
(
TP

Np
+

TN

Nn
))× 100, (3)

where TP , TN , Np, and Nn represent the numbers of true positive pixels, true negative pixels, mirror pixels, and non-mirror
pixels, respectively.

Note that for IoU and Fwβ , it is the higher the better, while for MAE and BER, it is the lower the better.
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Datasets
MSD
[19]

GDD
[12]

PMD
[10]

STEREO
[15]

NYUD-V2
[13]

KITTI-ROAD
[6]

LFSD
[9]

RGBD135
[1]

NLPR
[16]

NJUD
[8]

SSD
[20]

DUT-RGBD
[17]

SIP
[4] RGBD-Mirror

Publication ICCV CVPR CVPR CVPR ECCV ITSC CVPR ICIMCS ECCV ICIP ICCVW ICCV TNNLS Ours
Year 2019 2020 2020 2012 2012 2013 2014 2014 2014 2014 2017 2019 2020 2021
Number 4,018 3,916 6,461 797 1,449 289 100 135 1,000 1,985 80 1,200 929 3,049
Depth × × × X X X X X X X X X X X

Table 1. Number statistics of relevant RGB-D segmentation datasets.
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Datasets RGBD135 [1] NLPR [16] DUT-RGBD [17] SIP [4] RGBD-Mirror
Target Region 0.224 / 0.053 0.250 / 0.077 0.314 / 0.105 0.117 / 0.075 0.414 / 0.266
Non-Target Region 0.405 / 0.188 0.462 / 0.224 0.602 / 0.184 0.630 / 0.310 0.343 / 0.137
Difference -0.181 / -0.135 -0.212 / -0.147 -0.288 / -0.079 -0.513 / -0.235 0.071 / 0.129

(a) resolution distribution (b) depth distribution (blue and orange numbers denote the mean and standard deviation, respectively)
Figure 1. Statistics of our dataset. We show that our RGBD-Mirror has reasonable property distributions in terms of resolution and depth.

3. RGB-D Mirror Segmentation Dataset
Our first contribution is introducing a new RGB-D mirror segmentation dataset, named RGBD-Mirror, which contains

3,049 mirror images, depth maps, and corresponding ground truth mirror masks.
Number Statistics: the scale of a dataset plays an important role in providing diverse patterns for training a model. As

shown in Table 1, our RGBD-Mirror offers the most RGB-D images among all compared RGB-D datasets.
Resolution Statistics: the images in our RGBD-Mirror dataset vary in size, as shown in Figure 1(a). Compared with the

MSD [19], our dataset contains more images with high resolution (i.e., 1280 × 1024) and thus could provide more detailed
information for accurate mirror segmentation.

Depth Statistics: Figure 1(b) presents the statistics of the depth inside and outside target regions in the existing RGB-D
segmentation datasets. We observe that (i) the average depth of salient objects is lower than the ones of backgrounds, but
mirror regions have a higher average depth value than non-mirror regions; (ii) the standard deviation in terms of the depth
inside salient objects is typically small and lower than the ones of backgrounds. In contrast, depth varies dramatically inside
mirror regions (i.e., the corresponding standard deviation is 0.266). The large depth variation inside the mirror leads to a
great challenge for RGB-D mirror segmentation.

More examples of our RGBD-Mirror are shown in Figure 2, 3, 4, 5, 6, and 7.

4. Visual Comparison
We further qualitatively compare our PDNet with two prior mirror segmentation methods (i.e., MirrorNet [19] and PMD

[10]) as well as the best approaches from other three categories (i.e., semantic segmentation method CCNet [7], salient object
detection method F3Net [18], and RGB-D saliency detection method BBS-Net [5]). The results are shown in Figure 8, 9, 10,
and 11.
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Figure 2. Visual examples of mirror image, depth map, and mirror mask triplets in our RGBD-Mirror dataset.
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Figure 3. Visual examples of mirror image, depth map, and mirror mask triplets in our RGBD-Mirror dataset.
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Figure 4. Visual examples of mirror image, depth map, and mirror mask triplets in our RGBD-Mirror dataset.
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Figure 5. Visual examples of mirror image, depth map, and mirror mask triplets in our RGBD-Mirror dataset.
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Figure 6. Visual examples of mirror image, depth map, and mirror mask triplets in our RGBD-Mirror dataset.
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Figure 7. Visual examples of mirror image, depth map, and mirror mask triplets in our RGBD-Mirror dataset.
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Figure 8. Visual comparison of PDNet against state-of-the-art segmentation methods retrained on the RGBD-Mirror dataset.
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Figure 9. Visual comparison of PDNet against state-of-the-art segmentation methods retrained on the RGBD-Mirror dataset.
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Figure 10. Visual comparison of PDNet against state-of-the-art segmentation methods retrained on the RGBD-Mirror dataset.
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Figure 11. Visual comparison of PDNet against state-of-the-art segmentation methods retrained on the RGBD-Mirror dataset.
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