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1. Comparison with Criss-Cross Attention
Criss-Cross Attention [6] is a widely used variant of non-

local attention for high-level vision tasks, which also has a
sparse attention pattern. Specifically, it sums over only pix-
els on the criss-cross path of the query point. Therefore,
the sparse attention pattern is fixed and purely depends on
locations. Every pixel can finally obtain full image depen-
dencies by consecutively performing it two rounds.

Table 1. Comparison with Criss-Cross Attention on Set5 [1] (×2).
baseline Non-Local Criss-Cross NLSA

PSNR 37.78 37.86 37.83 37.92

Here we compare our Non-Local Sparse Attention
(NLSA) with Criss-Cross Attention. Results are reported in
Table 1. Although Criss-Cross Attention brings improve-
ments over the baseline, both NLSA and standard Non-
Local Attention outperform it. The best result is achieved
by our approach. This shows that enforcing sparsity based
on content similarity indeed makes better use of global in-
formation as compared to methods based on locations.

2. Running time and Memory Comparison
Here we present running time and peak memory con-

sumption comparison with standard Non-Local Attention
(NLA), following the settings in Table 5. Models are eval-
uated at two input sizes: 100×100 and 150×150. The run-
ning time is the average of 1K times on one RTX 2070.
As shown in Table 2, NLSA significantly saves running
time and memory consumption, demonstrating it is indeed
a more efficient operation. In Table 3, we also provide an
additional model-level comparison with previous state-of-
the-art SAN.

3. Visualization of Attention Maps
To obtain a deeper understanding of our NLSA, we visu-

alize the learned attention maps in Figure 1. For each exam-
ple image, we select one point and show its corresponding
correlation maps.

Table 2. Running time and memory comparison with NLA.

Method 100 × 100 150 × 150
Time (ms) Mem (MB) Time (ms) Mem (MB)

NLA 9.6 730 47.3 3738
NLSA-r1 0.9 45 4.0 104
NLSA-r2 1.4 109 6.2 242
NLSA-r4 2.4 231 10.3 521
NLSA-r8 4.3 509 16.8 1074

Table 3. Efficiency comparison with SAN.
Method

100 × 100 150 × 150
Time (ms) Mem (MB) FLOPs (G) Time (ms) Mem (MB) FLOPs (G)

SAN 320 1188 1120 1540 4289 5422
NLSN 142 625 988 375 1199 2005

As mentioned before, NLSA contains 4 rounds of inde-
pendent attention and final responses take their weighted
sum. Column 2 to 5 correspond to the maps of each at-
tention round. It can be observed that each map keeps
sparse but captures highly-correlated locations. The differ-
ences between maps is mainly because of the randomness
in Spherical LSH. As shown in the last column, the final
weighted attention map takes the union of most related lo-
cations and suppresses less correlated ones, resulting in a
more robust and powerful operation.

4. More Visual Results
We present more qualitative results in Figure 2 and

Figure 3 to demonstrate the superiority of our approach.
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Figure 1. Visualization of attention maps of Non-Local Sparse Attention. Brighter color indicates higher engagement. Attention maps of
each individual round are shown in column 2 to 5. The last column corresponds to the final weighted attention map. One can see each map
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Figure 3. Visual comparison for 4× SR on Manga109 dataset
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