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In this Supplementary Material, we provide additional

details regarding the neural network architecture used in

our experiments (Sec. 1), our training procedure (Sec. 2)

and the baseline selection process (Sec. 3). Then, we de-

tail the results of our human evaluation in Sec. 4. Finally,

we report more qualitative results in Sec. 6. Importantly,

this document is completed by an accompanying web-

site composed of two parts. The first (see play-bair.html,

play.html and play-tennis.html) contains fully playable de-

mos of CADDY running locally in the browser, the sec-

ond (see main.html) shows qualitative results. Note that, to

guarantee better compatibility across devices, our browser

demo runs on CPU and may require up to ten seconds to

load, while our complete model runs on GPU in real-time.

Due to the limitations on the size of the submission files, it

was possible to include only the model trained on the Atari

Breakout dataset. Also, html format offers more possibili-

ties in term of visualization (e.g. videos) and should be fa-

vored for qualitative evaluation.

1. Architecture details

In this section, we report further details regarding our

network architecture. We show a detailed view in Fig. 1.

Block details. We mainly employ six types of blocks

to build our architecture: convolution blocks, residual

blocks, up-sampling blocks, convolutional LSTMs, fully

connected layers and Gumbel-Softmax sampling blocks.

All our blocks use Leaky-ReLu activations with the ex-

ception of convolutional LSTM blocks and of final con-

volutional blocks producing the outputs, which are termi-

nated by a tanh function. Down-sampling is achieved using

average-pooling. Our up-sampling blocks instead make use

of a convolution and bilinear interpolation. We make use of

3×3 convolutions in all the layers, with the exception of the

*The second and third authors contributed equally to the work.

Tf Tinitial Tfinal batch size K

Atari Breakout 6 7 9 8 3

BAIR 6 7 12 8 7

Tennis 6 7 12 6 7

Table 1: Hyperparameters used on the different datasets.

convolution outputting the predicted frame at the original

resolution, which uses 7×7 filters.

Multiresolution. As explained in Sec. 3.3 of the main pa-

per, the decoder network D outputs images at multiple res-

olutions. Practically, we produce two lower resolution ver-

sions of the output image, one with halved resolution and

one with one-fourth resolution. These are produced by two

auxiliary convolutional blocks which take as input the fea-

tures produced by the up-sampling layers at the correspond-

ing resolution.

2. Training details

Optimization. In all our experiments, we use an Adam op-

timizer with a fixed learning rate of 2e−4.

Sequence length scheduling. During the initial phase of

training, we notice greater stability with small values of T ,

while, on the other hand, training with large values of T

increases the quality of long generated sequences. For this

reason, we adopt a training scheme with a variable value

of T . In particular, every 5000 iterations, we increase the

current value of T by 1 until the target value. Tab. 1 shows

the hyperparameter configurations for our datasets. In all

the experiments, we set the initial value of T to 7 and use

Tf =6 context frames.

Estimation of the number of actions K. Our method re-

quires the number of actions K to be provided as a hyper-

parameter. For the Atari Breakout dataset, we pose K = 3
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Figure 1: Overview of CADDY’s architecture used for the BAIR and the Tennis datasets. On the Atari Breakout dataset, due

to its simplicity, a version with lower capacity was employed. The model is composed of four main blocks: the encoder

network E, the dynamics network R, the action network A and the decoder network D. We indicate the number of features

at the top of each block. At the center, we show the factor such that the resolution of the output of the block is the input

resolution divided by the indicated factor.

following the number of discrete actions in the real game.

BAIR and Tennis, however, do not possess an intrinsic dis-

crete action space, so the number of discrete actions re-

quired to capture the dynamics of the environment must

be estimated. From initial experiments, we observe that

this number can be over-estimated without negative conse-

quences on the training process, with the model using extra

actions to learn variations on the same action. On BAIR, we

estimate K=7 which allows 2 movements on each of the 3

axes to be learned, plus a no movement action. On Tennis,

we also choose K =7, expecting to learn 2 movements on

the horizontal axis and 2 movements on the vertical axis, a

Stay action, a Hit the ball action and an extra action that al-

lows the model, if necessary, to learn an additional behavior

of the player.

Gumbel-Softmax temperature annealing. Hard Gumbel-

Softmax [8] discrete action sampling ensures that the action

component a is truly discrete. Using a hard sampling strat-

egy producing one hot vectors at the beginning of the train-

ing process, however, caused optimization difficulties. For

this reason, we adopt a soft Gumbel-Softmax sampling ap-

proach. At the beginning of training, we perform sampling

with a temperature of 1.0 which does not enforce a very low

entropy on the sampled action vector a. As the training pro-

gresses, we linearly reduce the sampling temperature to 0.4

at step 20.000, enforcing that the sampled values of a are

similar to one hot vectors.

Loss weights. We follow the hyperparameter selection pro-

cedure explained in Sec. 3.3 of the main paper to estimate

the loss weights on the Tennis dataset. The mutual informa-

tion maximization loss λact is used with weight 0.15, λrep

is set to 0.2, and λKL is used with weight 1e−4, while λa
rec

is posed to 1e−5. We found that these same values produce

similar optimization behaviors on the BAIR and on the Atari

Breakout datasets, so we use the same loss weights for all

the experiments.

Pretraining. We notice that convergence speed is increased

if the encoder network E and the decoder network D are

initialized to perform frame reconstruction. For this reason,

we integrate a short pretraining phase into our approach. In

particular, instead of computing st using the dynamics net-

work R, we employ a small auxiliary network to directly

translate ft to st so that E and D can be trained in isolation

on the reconstruction task. In this phase, the dynamics net-

work produces a reconstruction of st which we call ŝt, and

a reconstruction loss between st and ŝt is imposed. Gradi-

ents for this loss, however, are propagated through ŝt only.

The other loss terms remain unaltered.

Training times and GPU memory usage. We report in

Tab. 2 the memory requirements and training times for our

method on the different datasets and compare the results

with the baselines. CADDY requires 16GB of GPU mem-

ory to train on the Atary Breakout and Tennis dataset, and

44GB on the BAIR dataset due to the increased resolution.

In contrast, SAVP+ requires between 64GB and 128GB of

memory. Moreover, training times for our method vary be-

tween 68 and 320 GPU hours, while SAVP+ requires sig-

nificantly longer times between 730 and 1730 GPU hours.
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Atari Breakout BAIR Tennis

MoCoGAN [12] 16GB, 23h 16GB, 23h 16GB, 36h

MoCoGAN+ 16GB, 72h 16GB, 96h 16GB, 39h

SAVP [10] 32GB, 144h 32GB, 144h 16GB, 144h

SAVP+ 128GB, 1460h 128GB, 1730h 64GB, 730h

CADDY (Ours) 16GB, 107h 44GB, 320h 16GB, 68h

Table 2: GPU memory requirements in GB and time in

GPU hours for training the different methods on the cho-

sen datasets. CADDY trains significantly faster and with

lower memory requirements than the SAVP+ baseline.

FVD↓ Code Available

MoCoGAN [12] 503 X

CDNA [5] 297 X

SV2P [1] 263 X

SVG-LP [4] 257 X

SRVP [7] 181 X

VideoFlow [9] 131

SAVP [10] 116 X

DVD-GAN-FP [3] 110

TriVD-GAN-FP [11] 103

Video Transformer [13] 94

Table 3: FVD scores and code availability of a selection

of video prediction methods on the BAIR dataset in 64x64

resolution. Note that CADDY is not listed since it is not a

video prediction method.

3. Baselines selection

Since we present the first method for unsupervised PVG,

we select a set of baselines from existing video prediction

methods to adapt them to this new task. In Tab. 3, we com-

pare existing video prediction methods in terms of FVD in

the video prediction task on a 64x64 version of the BAIR

dataset, which we use as a benchmark to guide selection.

As the best and second-best performing methods with code

publicly available, we choose SAVP [10] and SRVP [7]

as baselines. Despite showing reduced performance, we

choose MoCoGAN [12] as an additional baseline because

its InfoGAN [2] loss for action learning makes it a good

candidate for adaptation to the PVG problem. Note that our

approach is not included in this comparison since CADDY

is not designed for future frame prediction.

4. Human evaluation details

In Figs. 2, 3, 4, 5 and 6, we show user votes obtained

during the AMT user study. Rows correspond to the differ-

ent actions learned by the models that were used to generate

the evaluated sequences, columns correspond to the action

options that were presented to the users. The MoCoGAN,

MoCoGAN+ and SAVP+ baselines do not learn a consistent
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40 6 4 57 6 47 70

49 7 6 52 2 46 68

46 7 3 48 3 49 74

38 7 3 49 5 52 76

34 6 6 51 5 50 78

43 7 3 49 6 50 72

Figure 2: AMT votes for MoCoGAN [12] on the Tennis

dataset. Rows correspond to the actions learned by the

model, columns correspond to the action options presented

to the users. A similar distribution of user votes is associ-

ated with each learned action.

action space. Indeed, their low Fleiss’ kappa measures [6]

(Sec. 4.2 of the main paper) show that users select differ-

ent options for sequences generated with the same action,

meaning that actions cause different effects based on the

particular initial frame used to produce the sequence. On

the other hand, the SAVP baseline (Fig. 4) learns actions

that result in a different distribution of user votes for each

row, indicating a partial capability of the model to condi-

tion its output based on the input action. Differently from

the other methods, CADDY (Fig. 6) presents for each row

a polarized response in a specific column, showing that our

method associates the same meaning to an action indepen-

dently from the starting frame. Some actions, including Act.

1 and Act. 5 present a lower user agreement. Despite the

low number of votes given to the Hit action, a manual anal-

ysis of the corresponding sequences reveals that they cor-

respond to the synthesis of ball hitting sequences, whose

typical movement of the arm is difficult to spot and typi-

cally associated with movement of the player. This explains

the portion of votes assigned to Left, Right, Forward and

Backward.

5. Human evaluation for Video Quality

We perform an additional human evaluation on the Ten-

nis dataset to assess the quality of the synthesized videos.

Since our method produces results in 256×96, we compare

only with baselines producing outputs in the same resolu-

tion to ensure fairness, namely MoCoGAN+ and SAVP+.

We run our study on AMT and ask users to express pref-

erence between one of two videos based on video quality.

One video is produced with CADDY and the other with
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22 6 2 90 68 5 37
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26 7 2 85 64 9 37

20 11 2 86 57 12 42

Figure 3: AMT votes for MoCoGAN+ on the Tennis

dataset. Rows correspond to the actions learned by the

model, columns correspond to the action options presented

to the users. A similar distribution of user votes is associ-

ated with each learned action.
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50 15 27 25 10 45 58

27 4 26 84 17 14 58

22 8 18 54 13 10 105

42 12 37 26 26 38 49

19 7 26 81 25 20 52

5 7 12 62 7 10 127

60 21 19 7 17 95 11

Figure 4: AMT votes for SAVP [10] on the Tennis dataset.

Rows correspond to the actions learned by the model,

columns correspond to the action options presented to the

users. The distribution of user votes is weakly dependent

on the learned action.

a baseline method. When compared to MoCoGAN+ and

SAVP+, users express preference for our method in respec-

tively 91.8% and 89.6% of cases.

6. Additional Qualitative Results

We provide the play-bair.html, play.html and play-

tennis.html pages that contain fully playable CADDY mod-

els running in browser which allows the reader to directly

evaluate the performance of our approach. In addition, we
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36 24 7 88 2 25 48

34 19 8 82 11 24 52

36 17 10 88 13 22 44

31 18 13 87 17 16 48

24 17 10 91 13 29 46

42 14 9 88 12 18 47

Figure 5: AMT votes for SAVP+ on the Tennis dataset.

Rows correspond to the actions learned by the model,

columns correspond to the action options presented to the

users. A similar distribution of user votes is associated with

each learned action.
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5 209 3 2 3 1 7

3 2 145 1 9 10 60

3 1 4 213 3 3 3

7 7 30 5 7 33 141

1 23 13 21 2 100 70

3 7 2 2 0 0 216

Figure 6: AMT votes for CADDY on the Tennis dataset.

Rows correspond to the actions learned by the model,

columns correspond to the action options presented to the

users. The distribution of user votes is strongly dependent

on the learned action and users express agreement on the

effect produced by each learned action.

produce a set of qualitative results to show the capabilities

of CADDY in the PVG task. In order to better visualize the

results, we provide a main.html page showing qualitative

results in the form of videos. In the accompanying website,

we show demos of live user interaction with CADDY and

examples of videos produced interactively by users. In ad-

dition, we present an action conditioning evaluation show-

ing the effects of each of the actions learned by our model
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and provide reconstruction results. The remaining of this

section shows additional results fitted for visualization on

paper.

6.1. Action Directions Space Visualization

In this section, we analyze the learned space of action di-

rections dt. Fig. 7a shows the action space learned on BAIR,

where CADDY discovers two predominant categories of

actions that correspond to common small movements of

the robot hand. The remaining action categories are as-

signed to less common actions including lifting or lower-

ing the robot arm or making fast horizontal movements.

Fig. 7b illustrates the learned action space for Atari Break-

out. The model clearly divides the action directions into

three clusters corresponding to left movement, no move-

ment and right movement. In Tennis, as shown in Fig. 7c,

the model learns a rich action space whose structure is cor-

related with player movement. According to AMT user

votes, Action 6 (orange) corresponds to Stay and its corre-

sponding action directions occupy the center of the space.

Action 4 (green) and 7 (red) correspond respectively to right

and left movement and occupy opposing portions of the ac-

tion space. Similarly, Action 2 (blue) and 3 (light blue) cor-

respond to forward and backward movement and occupy

opposing positions in the action space. Finally, according

to human evaluation, Action 1 (dark blue) and Action 5

(yellow), which are positioned at boundary regions, have

mixed correspondence to the movements of the neighboring

regions and combine movement with ball hitting actions.

6.2. Interactively Generated Videos

We use CADDY to produce videos with direct user inter-

action. Starting from an initial frame, the user presses the

button on its keyboard corresponding to the action to use at

the current step, and the model generates the next frame. An

extract of the generated results is shown in Fig. 8, while the

complete videos are shown in the corresponding section of

the main.html page. Videos can also be interactively gener-

ated by the reader through the play-bair.html, play.html and

play-tennis.html pages.

6.3. Action Conditioning Evaluation

In order to visualize the effects produced by each action

learned by CADDY, we consider an initial frame and, for

each action, we produce a sequence by repeatedly using the

current action as user input. We show the obtained results

in Fig. 9 and Fig. 10. On all the datasets, our model learns

actions that correspond to movement of the object of in-

terest along each axis. In addition, on the Tennis dataset,

CADDY learns actions related to ball hitting. In the corre-

sponding section of the main.html page, we show additional

video results both for CADDY and for the baselines.

Moreover, we analyze the action-conditional distribution

of the displacement ∆ associated with the object of inter-

est. We show the results in Fig. 11 for the BAIR dataset, in

Fig. 12 for the Atari Breakout dataset and in Fig. 13 for the

Tennis dataset. We observe that each action corresponds to

a distinct distribution of the displacement ∆ which captures

a specific movement direction. The other methods instead

present distributions that are more uniform across actions,

indicating a limited capability of learning actions that cor-

respond to the movement of the object of interest.

6.4. Action Variability Embeddings Evaluation

In this section, we perform an evaluation of the capacity

of action variability embeddings to capture variations of the

relative action. In particular, we consider a pair of actions ai
and aj . At inference time, since we pose action variability

embeddings vi = vj = 0, for Eq. (8) we have di = ci and

dj = cj i.e. the associated action directions are centered on

the action direction centroids. We argue that it is possible to

produce actions with intermediate effects between ai and aj
by sampling action variability embeddings corresponding

to action directions in intermediate locations between the

two action direction centroids.

Let l ∈ [0, 1] be an interpolation factor. We pose

a, c =

{

ai, ci if l <= 0.5

aj , cj if l > 0.5

v = l(cj − ci) + ci − c

The resulting action a and action variability embedding

v represent an intermediate action between ai and aj . In

Fig. 14 we show qualitative results representing the effects

obtained using intermediate actions that interpolate between

a pair of discrete actions.

6.5. Reconstruction Results

In this section, we show reconstructed sequences pro-

duced by our method. Note that additional results are

present in the corresponding section of the main.html page.

On the BAIR dataset (Fig. 15), our model correctly gener-

ates a robot arm that follows the relative movements of the

original sequence. We observe that the appearance of the

arm remains consistent in the whole sequence. On the other

hand, in the SAVP+ and MoCoGAN+ baselines the arm dis-

appears or shows artifacts towards the end of the sequence.

In Fig. 16, we show reconstruction results on the Atari

Breakout dataset. Our method correctly learns the action

space and the physics of the environment. The generated

player-controlled platform correctly matches the position

of that in the ground truth sequence, blocks that are hit by

the ball correctly disappear and the trajectory of the ball

5

https://willi-menapace.github.io/playable-video-generation-website/main.html
https://willi-menapace.github.io/playable-video-generation-website/play-bair.html
https://willi-menapace.github.io/playable-video-generation-website/play.html
https://willi-menapace.github.io/playable-video-generation-website/play-tennis.html
https://willi-menapace.github.io/playable-video-generation-website/main.html
https://willi-menapace.github.io/playable-video-generation-website/main.html


60 40 20 0 20 40 60

60

40

20

0

20

40

60

80

0

1

2

3

4

5

6

(a) BAIR

10 5 0 5 10

0.04

0.02

0.00

0.02

0.04

0

1

2

(b) Atari Breakout

60 40 20 0 20 40 60

60

40

20

0

20

40

60

0

1

2

3

4

5

6

(c) Tennis

Figure 7: Visualizations of the learned space of action directions dt with corresponding action direction centroids {ck}
K
k=1,

grouped by action.
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(a) BAIR

Act. 1 Act. 1 Act. 2 Act. 1 Act. 1 Act. 1 Act. 2 Act. 1 Act. 1 Act. 1 Act. 1 Act. 1 Act. 1 Act. 3 Act. 3 Act. 3

(b) Atari Breakout

Action 6 Action 4 Action 4 Action 5 Action 5 Action 5

(c) Tennis

Figure 8: Video sequences generated by CADDY with direct user interaction on the BAIR (a), Atari Breakout (b) and Tennis

(c) datasets. Additional videos are shown in the corresponding section of the main.html or can be directly generated using

the play-bair.html, play.html and play-tennis.html pages.

closely follows that of the original video, even after multi-

ple bounces. In the baselines, instead, the generated plat-

form does not match the behavior of that in the original

sequence. Artifacts are present, especially in the MoCo-

GAN+ and SAVP+ baselines, where multiple platforms are

generated of the platform disappears. Moreover, when the

ball is generated, its trajectory follows the original one less

accurately.

On the Tennis dataset (Fig. 17 and Fig. 18) CADDY cor-

rectly reconstructs the pose and the movements of the player

and generates its shadow. The other baselines instead gen-

erate sequences with artifacts such as disappearing or faded

player, and disappearing or detached shadow.
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Figure 11: Distribution of the displacement ∆ associated with robot arm on the BAIR dataset. Ideal distributions are dif-

ferent for each action and have low variance, meaning that they capture specific movements. The displacement component

associated with movement on the vertical axis z is not shown. While the distributions of the displacement ∆ on the x and

y axes associated with the SAVP and SAVP+ baselines are influenced by the input action, they do not successfully capture

movement of the robot arm on the z axis. This is reflected in the ∆-MSE score which shows that the actions learned by our

model correspond to more specific movements than the ones learned by the baselines.

Action 1 Action 2 Action 3

M
o
C

o
G

A
N

[1
2
]

40 30 20 10 0 10 20 30 40
10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

40 30 20 10 0 10 20 30 40
10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

40 30 20 10 0 10 20 30 40
10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

M
o
C

o
G

A
N

+

40 30 20 10 0 10 20 30 40
10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

40 30 20 10 0 10 20 30 40
10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

40 30 20 10 0 10 20 30 40
10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

S
A

V
P

[1
0

]

40 30 20 10 0 10 20 30 40
10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

40 30 20 10 0 10 20 30 40
10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

40 30 20 10 0 10 20 30 40
10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

S
A

V
P

+

40 30 20 10 0 10 20 30 40
10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

40 30 20 10 0 10 20 30 40
10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

40 30 20 10 0 10 20 30 40
10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

O
u
rs

40 30 20 10 0 10 20 30 40
10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

40 30 20 10 0 10 20 30 40
10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

40 30 20 10 0 10 20 30 40
10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

Figure 12: Distribution of the displacement ∆ associated with the player-controlled platform on the Atari Breakout dataset.

Ideal distributions are different for each action and have low variance, meaning that they capture specific movements. Differ-

ently from the baselines, our model learns actions that correspond to specific movements of the platform.
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Figure 13: Distribution of the displacement ∆ associated with the player on the Tennis dataset. Ideal distributions are different

for each action and have low variance, meaning that they capture specific movements. Our model successfully conditions the

movement of the player on the action, while the other baselines show limited conditioning capabilities.
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Figure 14: Visualization of the last frame of sequences produced from the same initial frame with differing actions and action

variability embeddings. The sequences in red represent pure discrete actions where, action variability embeddings are posed

to 0. For the sequences in black instead, actions and action variability embeddings are derived as described in Sec. 6.4 to

represent intermediate actions between the two closest discrete actions using values of the interpolation factor of 0.3, 0.5 and

0.7. Note how the player positions depicted in the black sequences smoothly interpolate between the positions obtained with

pure discrete actions, showing the capability of action variability embeddings to capture variations on discrete actions.

Scaling autoregressive video models. In International Con-

ference on Learning Representations (ICLR), 2020.
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Figure 15: Reconstructed sequences on the BAIR dataset using the learned, discrete actions extracted from the original

sequence as inputs.
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Figure 16: Reconstructed sequences on the Atari Breakout dataset using the learned, discrete actions extracted from the

original sequence as inputs.
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Figure 17: Reconstructed sequences on the Tennis dataset using the learned, discrete actions extracted from the original

sequence as inputs.
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Figure 18: Reconstructed sequences on the Tennis dataset using the learned, discrete actions extracted from the original

sequence as inputs.
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