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A. Proofs for MagFace
Recall the MagFace loss for a sample i is

Li = − log
es cos (θyi+m(ai))

es cos (θyi+m(ai)) +
∑n
j=1,j 6=yi e

s cos θj

+ λgg(ai)

(1)

Let A(ai) = s cos(θyi + m(ai)) and B =∑n
j=1,j 6=yi e

s cos θj and rewrite the loss as

Li = − log eA(ai)

eA(ai)+B
+ λgg(ai) (2)

We first introduce and prove Lemma 1.

Lemma 1. Assume that fi is top-k correctly classified and
m(ai) ∈ [0, π/2]. If the number of identities n is much
larger than k (i.e., n� k), the probability of θyi+m(ai) ∈
[0, π/2] approaches 1.

Proof. Denote the angle between feature fi and center class
Wj , j ∈ {1, · · · , n} as θj . Assuming the distribution of θj
is uniform, it’s easy to prove P (θj +m(ai) ∈ [0, π/2]) =
π/2−m(ai)

π . Let p = π/2−m(ai)
π . If fi is top-k correctly

classified, the probability of θyi +m(ai) ∈ [0, π/2] is the
same as the probability of there are at least k θ to satisfy
θ +m(ai) ∈ [0, π/2]. Then the probability is

P (θyi +m(ai) ∈ [0, π/2]) =

n∑
i=k

(
n

i

)
pi(1− p)(n−i)o

= 1−
k−1∑
i=0

(
n

i

)
pi(1− p)(n−i)

(3)

When n is a large integer and n � k, each
(
n
i

)
pi(1 −

p)(n−i), i = 1, 2, · · · k − 1 converges to 0. Therefore, prob-
ability of θyi +m(ai) ∈ [0, π/2] approaches 1.

Lemma 1 is fundamental for the following proofs. The
number of identities is large in real-world applications (e.g.,
3.8M for MS1Mv2 [2, 1]). Therefore, the probability of
θyi +m(ai) ∈ [0, π/2] approaches 1 in most cases.

A.1. Requirements for MagFace

In MagFace, m(ai), g(ai), λg are required to have the
following constraints:

1. m(ai) is an increasing convex function in [la, ua] and
m′(ai) ∈ (0,K], where K is a upper bound;

2. g(ai) is a strictly convex function with g′(ua) = 0;

3. λg ≥ sK
−g′(la) .

A.2. Proof for Property of Convergence

We prove the property of convergence by showing the
strictly convexity of the function Li (Property 1) and the
existence of the optimum (Property 2).

Property 1. For ai ∈ [la, ua], Li is a strictly convex func-
tion of ai.

Proof. The first and second deriviates of A(ai) are

A′(ai) = −s sin(θyi +m(ai))m
′(ai)

A′′(ai) = −s cos(θyi +m(ai))(m
′(ai))

2

− s sin(θyi +m(ai))m
′′(ai)

(4)

According to Lemma 1, we have cos(θyi +m(ai)) ≥ 0 and
sin(θyi + m(ai)) ≥ 0 . Because we define m(ai) to be
convex and g(ai) to be strictly convex when ai ∈ [la, ua],
m′′(ai) ≥ 0 and g′′(ai) > 0 always hold. Therefore,
A′′(ai) ≤ 0.

The first and second order derivatives of the loss Li are

∂Li
∂ai

= − B

eA(ai) +B
A′(ai) + λgg

′(ai)

∂2Li
(∂ai)2

= − B

(eA(ai) +B)2

(
(eA(ai) +B)A′′(ai)−BeA(ai)A′(ai)

2
)

+ λgg
′′(ai)

= − B

eA(ai) +B
A′′(ai) +

B2

(eA(ai) +B)2
eA(ai)A′(ai)

2

+ λgg
′′(ai)



Method Hyperparameters Margin CFP-FP IJB-C (TAR@FAR)
lm um λg la ua mean max min 1e-6 1e-5 1e-4 1e-3

ArcFace - - - - - 0.50 - - 97.32 83.88 91.59 95.00 96.86
MagFace 0.45 0.65 35 10 110 0.50 0.49 0.52 97.23 81.12 91.44 94.95 96.96

0.40 0.80 35 10 110 0.50 0.46 0.53 97.47 85.82 92.06 95.12 96.92
0.35 1.00 35 10 110 0.50 0.42 0.54 97.40 84.35 91.65 95.05 97.02
0.25 1.60 35 10 110 0.50 0.35 0.61 97.30 81.64 91.09 94.91 96.87

Table A1: Verification accuracy (%) on CFP-FP and IJB-C with different ditributions of margins. Backbone network:
ResNet50.

It’s easy to prove that B > 0, eA(ai) + B > 0, the first
two part of ∂2Li

(∂ai)2
is non-negative while the third part is

always positive. Therefore, ∂2Li
(∂ai)2

> 0 and Li is a strictly
convex function with respect to ai.

Property 2. A unique optimal solution a∗i exists in [la, ua].

Proof. Because the loss function Li is a strictly convex
function, we have ∂Li

∂a1i
> ∂Li

∂a2i
if ua ≥ a1i > a2i ≥ la. Next

we prove that there exist a optimal solution a∗i ∈ [la, ua]. If
it exists, then it is unique because of the strictly convexity.

As ∂Li
∂ai

(ai) = Bs
eA(ai)+B

sin(θyi + m(ai))m
′(ai) +

λgg
′(ai) and considering the constraints m′(ai) ∈ (0,K],

g′(ua) = 0, λg ≥ sK
−g′(la) , the values of derivatives of la, ua

are

∂Li
∂ai

(ua) =
Bs

eA(ai) +B
sin(θyi +m(ai))m

′(ua) > 0

∂Li
∂ai

(la) =
Bs

eA(ai) +B
sin(θyi +m(ai))m

′(la) + λgg
′(la)

< sK + λgg
′(la) ≤ 0

(5)

As ∂Li
∂ai

is monotonically and strictly increasing, there must
exist a unique value in [la, ua] which have a 0 derivative.
Therefore, a optimal solution exists and is unique.

A.3. Proof for Property of Monotonicity

To prove the property of monotonicity, we first show that
optimal a∗i increases with a samller cosine-distance to its
class center (Property 3). As B can reveal the overall cos-
distances to other class centers, we further prove that in-
creaing B can lead to a larger optimal feature magnitude
(Property 4).

Property 3. With fixed fi and Wj , j ∈ {1, · · · , n}, j 6= yi,
the optimal feature magnitude a∗i is monotonically decreas-
ing if the cosine-distance to its class center Wyi increases.

Proof. Assuming there are two class center W 1
yi ,W

2
yi and

their cosine distance with feature fi are θ1yi , θ
2
yi . Assum-

ing θ1yi < θ2yi (i.e., class center W 1
yi has a smaller distance

with feature fi) and the corresponding optimal feature mag-
nitudes are a∗i,1, a

∗
i,2.

The first deriviate of Li is

∂Li
∂ai

= − B

eA(ai) +B
A′(ai) + λgg

′(ai)

=
Bsm′(ai)

es cos(θyi+m(ai)) +B
sin(θyi +m(ai)) + λgg

′(ai)

(6)

For θyi +m(ai) ∈ (0, π/2], we have cos(θ1yi +m(ai)) >
cos(θ2yi+m(ai)) and sin(θ1yi+m(ai)) < sin(θ2yi+m(ai)).
With m′(ai) > 0, it’s obvious that

Bsm′(ai)

e
s cos(θ1yi

+m(ai))+B
sin(θ1yi +m(ai)) <

Bsm′(ai)

e
s cos(θ2yi

+m(ai))+B
sin(θ2yi +m(ai)).

Therefore, we have
∂Li(θ

1
yi

)

∂ai
<

∂Li(θ
2
yi

)

∂ai
. Based on the

property of optimal solution for strictly convex function, we

have 0 =
∂Li(θ

1
yi

)

∂a∗i,1
=

∂Li(θ
2
yi

)

∂a∗i,2
>

∂Li(θ
1
yi

)

∂a∗i,2
, which leads to

a∗i,1 > a∗i,2.

Property 4. With other things fixed, the optimal feature
magnitude a∗i is monotonically decreasing with a decreas-
ing inter-class distance B.

Proof. Assume B1 > B2 > 0 with optimal a∗i,1, a
∗
i,2. Sim-

ilar to the proof before, we have

B1sm
′(ai)

es cos(θyi
+m(ai))+B1

sin(θyi +m(ai)) >
B2sm

′(ai)

es cos(θyi
+m(ai))+B2

sin(θyi +m(ai)).

Therefore, we have ∂Li(B1)
∂ai

> ∂Li(B2)
∂ai

. Based on the prop-
erty of optimal solution for strictly convex function, we
have 0 = ∂Li(B1)

∂a∗i,1
= ∂Li(B2)

∂a∗i,2
< ∂Li(B1)

∂a∗i,2
, which leads to

a∗i,1 < a∗i,2.

B. Experimental Settings

B.1. Training settings for Figure 3

We adpot ResNet50 as the backbone network. Models
are trained on MS1Mv2 [2, 1] for 20 epochs with batch size
512 and initial learning rate 0.1, dropped by 0.1 every 5
epochs. 512 samples of the last iteration are used for visu-
alization.
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Figure A1: Extended Visualization of Figure 6.

B.2. Settings of m(ai), g(ai) and λg

In our experiments, we define function m(ai) as a linear
function defined on [la, ua] with m(la) = lm,m(ua) = um
and g(ai) = 1

ai
+ 1

u2
a
ai. Therefore, we have

m(ai) =
um − lm
ua − la

(ai − la) + lm

λg ≥
sK

−g′(la)
=

su2al
2
a

(u2a − l2a)
um − lm
ua − la

(7)

C. Ablation Study on Margin Distributions

In this section, effects of the feature distributions during
training are studied. With (λg, la, ua) fixed to (35, 10, 110),
we carefully select various combinations of lm, um to align
the mean margin on the training dataset to ArcFace (0.5)
in our implementation. Features are distributed more sepa-
rated if with a larger maximum margin and a smaller mini-
mum margin.

Table A1 shows the recognition results with various hy-
perparameters. With (lm, um) = (0.45, 0.65), the penalty
of magnitude loss degrades the performance of the recog-
nition. With (lm, um) = (0.25, 1.60), the performance is
also worse than then baseline as hard samples are assigned
to small margins (a.k.a., hard/noisy samples are down-
weighted). Parameter (0.40, 0.80) balances the feature dis-
tribution and margins for hard/noisy samples, and therefore
achieves a significant improvement on benchmarks.

D. Extended Visualization of Figure 6

We present a extended visualization of figure 6 in fig-
ure A1 which has more examples of faces with feature mag-
nitudes. All the faces are sample from the IJB-C bench-
mark. It can be seen that faces with magnitudes around
28 are mostly profile faces while around 35 are high-
quality and frontal faces. That is consistent with the pro-
file/frontal peaks in the CFP-FP benchmark and indicates
that faces with similar magnitudes show similar quality pat-
terns across benchmarks. In real applications, we can set a
proper threshold for the magnitude and should be able to fil-
ter similar low-quality faces, even under various scenarios.

Besides directly served as qualities, our feature magni-
tudes can also be used as quality labels for faces, which
avoids human labelling costs. These labels are more suit-
able for recognition, and therefore can be used to boost
other quality models.

E. Authors’ Contributions

Shichao Zhao and Zhida Huang contribute similarly to
this work. Besides involved in discussions and help polish
the work, shichao zhao mainly conductsed experiments on
clustering and zhida huang implemented baselines as well
as evaluation metrics in quality experiments.
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