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A. Proofs for MagFace

Recall the MagFace loss for a sample ¢ is

S cos (8y, +m(ai))

Li = 710g s cos m(a; n i
e (04, +m(as)) + ijl.,j#yq', S cos 0; (1)
+ )‘gg(ai)
Let A(a;) = scos(fy, + m(a;)) and B =
2?21 oy, €57 % and rewrite the loss as
eAlaq)
Li = —log g + Ag9(ai) 2)

We first introduce and prove Lemma 1.

Lemma 1. Assume that f; is top-k correctly classified and
m(a;) € [0,7/2]. If the number of identities n is much
larger than k (i.e., n > k), the probability of 0,,, +m(a;) €
[0, /2] approaches 1.

Proof. Denote the angle between feature f; and center class
W;,j € {1,--- ,n} as 6;. Assuming the distribution of §,
is uniform, it’s easy to prove P (8; + m(a;) € [0,7/2]) =
M Let p = M If f; is top-k correctly
classified, the probability of 6,, + m(a;) € [0,7/2] is the
same as the probability of there are at least k 6 to satisfy
0 + m(a;) € [0, 7/2]. Then the probability is
LAWK n—i
P8y, + m(a;) € [0,7/2]) = ; <l>p (1—p) o
- 3)

—1-3(7)pa-pe

When n is a large integer and n > k, each (?)pi(l -
p)("_i),z’ =1,2,---k — 1 converges to 0. Therefore, prob-
ability of 6,, + m(a;) € [0, 7/2] approaches 1. O

Lemma 1 is fundamental for the following proofs. The
number of identities is large in real-world applications (e.g.,
3.8M for MS1IMv2 [2, 1]). Therefore, the probability of
8y, + m(a;) € [0,7/2] approaches 1 in most cases.

A.1. Requirements for MagFace

In MagFace, m(a;), g(a;), Ay are required to have the
following constraints:

1. m(a;) is an increasing convex function in [/,, u,] and
m/'(a;) € (0, K], where K is a upper bound,;

2. g(a;) is a strictly convex function with ¢’(u,) = 0;

sK
3. )\g Z W.

A.2. Proof for Property of Convergence
We prove the property of convergence by showing the

strictly convexity of the function L; (Property 1) and the
existence of the optimum (Property 2).

Property 1. For a; € [lo, us), L; is a strictly convex func-
tion of a;.

Proof. The first and second deriviates of A(a;) are

Al(a;) = —ssin(fy, + m(a;))m’(a;)
A"(a;) = —scos(8,, +m(a;))(m’(a;))? 4)

— ssin(0y, + m(a;))m” (a;)

According to Lemma 1, we have cos(8,,, +m(a;)) > 0 and
sin(6,, + m(a;)) > 0. Because we define m(a;) to be
convex and g(a;) to be strictly convex when a; € [lg, uql,
m’”(a;) > 0 and g”(a;) > 0 always hold. Therefore,
A" (a;) <0.

The first and second order derivatives of the loss L; are

oL; B
B0~ eam g (@) F dedl (@)
%L, B
(0a;)2 ~ (Al + B)?2 <(8A(a‘) + B)A"(a;) — BeA(““)A’("'i)Q)
+ Agg”(ai)
B B?
e i ,A(ai)Al ; 2
cAl) 1 B (a;) + (eA@ 1 B)? B)2€ (a;)

+ Agg" (a;)



Method Hyperparameters Margin CFP-FP 1JB-C (TAR@FAR)
Im Um Ag la Uqg mean  max min le-6 le-5 le-4 le-3
ArcFace - - - - - 0.50 - - 97.32 83.88 91.59 95.00 96.86
MagFace 045 065 35 10 110 | 050 049 0.52 97.23 81.12 9144 9495 96.96
040 080 35 10 110 | 050 046 053 97.47 85.82 92.06 95.12 96.92
035 100 35 10 110 | 050 042 0.54 97.40 8435 91.65 9505 97.02
025 160 35 10 110 | 050 035 0.61 97.30 81.64 91.09 9491 96.87

Table Al: Verification accuracy (%) on CFP-FP and IJB-C with different ditributions of margins.

ResNet50.

It’s easy to prove that B > 0,e(%) 4 B > 0, the first

two part of (’g;ifﬁ is non-negative while the third part is
2

always positive. Therefore, (aaaiL)z > 0 and L; is a strictly

convex function with respect to a;. O
Property 2. A unique optimal solution a exists in [y, Ug).

Proof Because the loss function L; is a strictly convex
oL, 1 2

9l > a; > a; > l,. Next

we prove that there exist a optimal solution a; € [l,, u,]. If

it exists then it is unique because of the strictly convexity.

Ca) = g sy, + mla)m’(a;) +
Agg (al) and considering the constraints m/(a;) € (0, K],
g (uq) =0,y > ,(l 7 the values of derivatives of o, uq
are
8[4 Bs .
%(ua) = msmw% +m(a;))m’(ug) > 0
8LZ Bs . / / 5
B o) = msm(@h + m(a;))m'(la) + Agg'(la) ®)
< sK+X9'(la) <0
As gi £ is monotonically and strictly increasing, there must

exist a unique value in [l,, u,] which have a 0 derivative.
Therefore, a optimal solution exists and is unique. O

A.3. Proof for Property of Monotonicity

To prove the property of monotonicity, we first show that
optimal a] increases with a samller cosine-distance to its
class center (Property 3). As B can reveal the overall cos-
distances to other class centers, we further prove that in-
creaing B can lead to a larger optimal feature magnitude
(Property 4).

Property 3. With fixed f; and Wj,j € {1,--- ,n},j # v,
the optimal feature magnitude a} is monotonically decreas-
ing if the cosine-distance to its class center W, increases.

Proof. Assuming there are two class center W, , W7 and
their cos1ne distance with feature f; are 05 ,05 Assum-
ing 9 (z e., class center W1 has a smaller distance
with feature fl) and the corresponding optimal feature mag-

nitudes are a; 1, a; 5.

Backbone network:

The first deriviate of L; is

oL,
0(12' B

B ! /
EA('%) n BA (al) + )\gg (al)
. Bsm/(a;)

= eseos@y, tmia) 1 g

(6)

sin(fy, +m(a;)) + Ag9'(as)

For 6, + m(a;) € (0,7/2], we have cos(f,,, + m(a;)) >
cos(02, +m(a;)) and sin(6, +m(a;)) < sm(92 +m(a;)).
With m/(a;) > 0, it’s obvious that

Bom'(a;) sin(0), +m(a;)) < — Bam’(a:) sin(62, +m(a;)).

Es('()s(9b1+rrt(11i))+8 Yi &N,o.\(e?i +'nt,(a,l))+B
aLi(0,,) AL (02 )
Therefore, we have 5a; a, Yi-  Based on the
property of optimal solution for strictly convex function, we
AL (0} ) AL (02 ) aL;(6,,)
have 0 = 5o b — Sa i 5a Yi~ “which leads to
a;q a; o a; o
* *
a;y > a; O

Property 4. With other things fixed, the optimal feature
magnitude a} is monotonically decreasing with a decreas-
ing inter-class distance B.

Proof. Assume By > By > (0 with optimal a; |, a; 5. Sim-
ilar to the proof before, we have

Bysm/(a;)
&° 05Oy Fm(a) 1 B,

Basm/(a;)

sin(fy, +m(ai)) > e, wmaig g, S0y, +m(ai)).

Therefore, we have 8L3(Bl) > 9L (BZ) . Based on the prop-

erty of optimal solution for strictly convex function, we
have 0 — oL, (Bl) OL;(B2) < OL;(B1)

* 0
daj daj , a}

, which leads to
O

* *
a; 1 < @9

B. Experimental Settings
B.1. Training settings for Figure 3

We adpot ResNet50 as the backbone network. Models
are trained on MS1Mv2 [2, 1] for 20 epochs with batch size
512 and initial learning rate 0.1, dropped by 0.1 every 5
epochs. 512 samples of the last iteration are used for visu-
alization.
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Figure Al: Extended Visualization of Figure 6.

B.2. Settings of m(a;), g(a;) and )\,

In our experiments, we define function m(a;) as a linear
function defined on [l,, u,] with m(lg) = I, m(ug) = um,
and g(a;) = ;- + > a;. Therefore, we have

Um — lm

m(al) = (ai - la) + 1

Ug — g
> sK _ suglg
T gl (2= 12) ua—la

(M

Um — lm

C. Ablation Study on Margin Distributions

In this section, effects of the feature distributions during
training are studied. With (Ay, lo, u, ) fixed to (35,10, 110),
we carefully select various combinations of [,,,, u,, to align
the mean margin on the training dataset to ArcFace (0.5)
in our implementation. Features are distributed more sepa-
rated if with a larger maximum margin and a smaller mini-
mum margin.

Table A1 shows the recognition results with various hy-
perparameters. With (1,,,, u,,) = (0.45,0.65), the penalty
of magnitude loss degrades the performance of the recog-
nition. With ({,,,, u,,) = (0.25,1.60), the performance is
also worse than then baseline as hard samples are assigned
to small margins (a.k.a., hard/noisy samples are down-
weighted). Parameter (0.40, 0.80) balances the feature dis-
tribution and margins for hard/noisy samples, and therefore
achieves a significant improvement on benchmarks.

D. Extended Visualization of Figure 6

We present a extended visualization of figure 6 in fig-
ure Al which has more examples of faces with feature mag-
nitudes. All the faces are sample from the IJB-C bench-
mark. It can be seen that faces with magnitudes around
28 are mostly profile faces while around 35 are high-
quality and frontal faces. That is consistent with the pro-
file/frontal peaks in the CFP-FP benchmark and indicates
that faces with similar magnitudes show similar quality pat-
terns across benchmarks. In real applications, we can set a
proper threshold for the magnitude and should be able to fil-
ter similar low-quality faces, even under various scenarios.

Besides directly served as qualities, our feature magni-
tudes can also be used as quality labels for faces, which
avoids human labelling costs. These labels are more suit-
able for recognition, and therefore can be used to boost
other quality models.

E. Authors’ Contributions

Shichao Zhao and Zhida Huang contribute similarly to
this work. Besides involved in discussions and help polish
the work, shichao zhao mainly conductsed experiments on
clustering and zhida huang implemented baselines as well
as evaluation metrics in quality experiments.
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