
StEP: Style-based Encoder Pre-training for Multi-modal Image Synthesis -
Supplementary material

Moustafa Meshry Yixuan Ren Larry S. Davis Abhinav Shrivastava
University of Maryland, College Park

A. Appendix
A.1. Implementation details

Triplet selection requires computing the set of nearest and
furthest neighbors to each anchor image. When pre-training
using a large dataset, we found it sufficient to randomly
sample a subset of 8000 images and sample triplets from
this subset. This number was chosen to ensure fast nearest-
neighbor computation.

The generator network G has a symmetric encoder-
decoder architecture based on [1], with extra skip connec-
tions by concatenating feature maps of the encoder and de-
coder. We use a multiscale-patchGAN discriminator [1]
with 3 scales and employ a LSGAN [2] loss. The mapper
network M is a multi-layer perceptron (MLP) with three
128-dimensional hidden layers and a tanh activation function.
For the reconstruction loss, we use the perceptual loss [3]
evaluated at convi,2 for i ∈ [1, 5] of VGG [4] with linear
weights of wi = 1/26−i for i ∈ [1, 5]. The architecture
of the style encoder E is adopted from [5], and we use a
latent style vector z ∈ R8. Our optimizers setup is simi-
lar to that in [6]. We use three Adam optimizers: one for
the generator G and encoder E, another for the discrimi-
nator D, and another optimizer for the generator G alone
with β1 = 0, β2 = 0.99 for the three optimizers, and learn-
ing rates of 0.001, 0.001 and 0.0001 respectively. We use a
separate Adam optimizer for the mapper network M with
β1 = 0.5, β2 = 0.99, and a learning rate of 0.01 with a
decay rate of 0.7 applied every 50 steps. Relative weights for
the loss terms are λcGAN = 1, λrec = 0.02 and λL2 = 0.01
for the GAN loss, reconstruction loss, and L2 latent vector
regularization respectively. When sampling triplets for any
anchor image Ic, we use kc = 5, kf = 13 for the size of the
set of close and far neighbors respectively.

A.2. Training time

Simplifying the training objective allows for faster train-
ing, as well as a larger batch size due to lower memory
usage. Table 1 shows the processing time per 1000 training
images for the baselines as well as different variations of our
approach as defined in Table 2 in the main text.

Table 1: Training time (in seconds) per 1000 images for
the baselines, as well as different versions of our approach
(defined in Table 2 in the main text).

Approach Batch
size

time/kimg↓
(sec)

Max
batch size

time/kimg↓
(sec)

Bicycle v1 8 93.11 12 85.36
MUNIT-p 8 155.72 8 155.72

Ours v1 8 145.50 8 145.50
Ours v2 8 98.55 12 93.04
Ours v3 8 64.92 16 53.80

Figure 1: Convergence comparison between the proposed
staged training (ours - v3) and the BicycleGAN baselines
measured by the reconstruction error (LPIPS) of the valida-
tion set of the edges2handbags dataset. Dotted line shows
the transition between stages 2 and 3 of our training (i.e,
switching from a fixed E to finetuning both G and E to-
gether).

A.3. Convergence analysis

Figure 1 compares the convergence of our staged training
compared to the BicycleGAN baselines. The dotted line
in the graph marks the transition between stages 2 and 3
of our training (i.e, switching from a fixed pre-trained en-
coder E to finetuning both G and E together). We measure



Input Style 1 Style 2

Figure 2: Style interpolation. Left column is the input to the generator G, second and last columns are input style images to
the style encoder, and middle images are linear interpolation in the embedding space (figure better seen in zoom).

O
ur

s
B

ic
yc

le
 v

1
M

U
N

IT
-p

Input Style 1 Style 2

O
ur

s
B

ic
yc

le
 v

1
M

U
N

IT
-p

Input Style 1 Style 2

Figure 3: Style interpolation. Left column is the input to the generator G, second and last columns are input style images to
the style encoder, and middle images are linear interpolation in the embedding space (figure better seen in zoom).

the reconstruction error (LPIPS) of the validation set of the
edges2handbags dataset as the training progresses. Results
show that with a fixed pre-trained encoder, our staged train-
ing starts with higher error than the baselines, but quickly
drops to show similar performance as the baselines, and even
beats the baselines before switching to stage 3 (marked by a
dotted line). When starting to finetune the encoder E, we get
a spike in the reconstruction error as the network adapts to
the shift in the pre-trained embeddings, but then our staged
training steadily widens the performance gap with the base-

lines. This shows the importance of the finetuning stage to
tweak the pre-trained embeddings to better serve the image
synthesis task for the target domain.

A.4. More quantitative comparison

We report the Inception Score (IS) computed over the
validation set of various datasets in Table 2. Surprisingly,
results after finetuning (“ours - stage 3”) are slightly worse
than those before finetuning (“ours - stage 2”), but both are
still better than the baselines except for the maps dataset. We



Input

S
ty

le

Input

S
ty

le

InputInput

S
ty

le

S
ty

le
O

ur
s

B
ic

yc
le

 v
1

M
U

N
T-

p

O
ur

s
B

ic
yc

le
 v

1
M

U
N

T-
p

O
ur

s
B

ic
yc

le
 v

1
M

U
N

T-
p

O
ur

s
B

ic
yc

le
 v

1
M

U
N

T-
p

Figure 4: Style transfer comparison on different datasets. For each dataset, we apply different styles to the same input image
and show the output of different methods.

also note that Inception Score is not very suited to image-to-
image translation tasks, since it prefers output diversity with
respect to ImageNet classes, not within-class diversity as in
our case.

Table 2: Inception score comparison (higher is better) for
different datasets.

handbags shoes facades night2day maps space needle

Bicycle v1 2.13 2.83 1.41 1.65 3.26 1.82
MUNIT-p 2.07 2.64 1.45 1.74 3.57 1.77
Ours - stage 2 2.22 2.75 1.61 1.76 3.32 1.90
Ours - stage 3 2.15 2.85 1.56 1.84 3.28 1.89

A.5. More style interpolations

Figure 2 shows style interpolation on more datasets. No-
tice that, in the edges2handbags results, not only the color
is transferred, but also the texture varies from non-smooth
to smooth leather. Also, in the maps dataset, the density
of bushes varies smoothly. Figure 3 further compares our
interpolation results with the baselines. Our results show
more complex interpolations, as evidenced by the change
in lighting and cloud patterns, as well as more faithful style

transfer compared to the baselines.

A.6. Style transfer comparison

We compare style transfer performance of our approach
against that of the baselines in Figure 4. Our approach faith-
fully captures and transfers colors and weather conditions
(including sky and surface lighting) compared to the base-
lines. We attribute the inferior results of the baselines to the
reliance on VAEs to train the latent space. This is because
noise added by VAEs means that slight changes to one style
would still be mapped to the same point in the latent space,
which limits the capacity of low dimensional latent space.
On the other hand, our pre-trained embeddings don’t rely on
VAEs and hence, can discriminate between more styles.

A.7. Latent space visualization

Figure 5a visualizes the latent space learned by the style
encoder E after pretraining and before finetuning (a), af-
ter finetuning (b), and the latent space learned by Bicycle-
GAN [6] (c). The embedding learned through pre-training
(i.e. before training the generator G) shows meaningful
clusters, which verifies the validity of the proposed style-
based pre-training. Finetuning smooths the style clusters and
brings the latent space closer to that of BicycleGAN.



(a) Our approach: after style pretraining.

(b) Our approach: after finetuning.

(c) BicycleGAN v1 baseline.

Figure 5: t-SNE plots for the latent style space learned by the style encoder E (a) after style pretraining, (b) after finetuning,
and (c) using the BicycleGAN v1 baseline.



Figure 6: t-SNE plot for the pre-trained latent space learned for facial expressions on a subset of the KDEF dataset.

A.8. Encoder pre-training with non-style metrics

Ours

Bicycle v1

MUNIT-p

Input Different emotions

Figure 7: Emotion translation results. First row shows the
input image, as well as the ground truth images from which
we encode the latent emotion vector for reconstruction. Our
staged training approach is able to achieve multi-modal syn-
thesis, while the baselines collapse to a single mode.

Pre-training the encoder using a style-based triplet loss
showed to be successful for multi-modal image translation
tasks where the variability in the target domain is mainly
color-based. This is shown in the results obtained on several
benchmarks, even before the finetuning stage (“ours - stage
2” in Table 1 of the main text). We note though that the

usage of style-loss as a distance metric for triplet sampling
is just one choice and can be replaced with other distance
metrics depending on the target application. Triplet sampling
with style distance results in learning an embedding space
where images with similar colors/styles lie closely in that
space as shown in Section A.7. If, for example, we sample
triplets instead based on the distance between VGG-Face [7]
embeddings, the encoder will learn a latent space which is
clustered by identity. In this section, we aim to validate
that the proposed pre-training strategy can be extended to
multi-modal image-to-image translation tasks with non-style
variability. We inspect the task of manipulating facial expres-
sions, where the input is a neutral face, and the output can
have other emotions or facial expressions. For this task, sim-
ilar emotions should be embedded closely in the latent space.
We therefore use an off-the-shelf facial expression recog-
nition system to compute the emotion similarity/distance
between any pair of images. Specifically, we compute the
emotion distance as the euclidean distance between the 512-
dimensional feature map of the last layer of a pretrained
classification network (e.g., [8]). We visualize the learned
latent space in Figure 6, which shows clusters with similar
emotions or facial expressions. We also show example trans-
lation results on a holdout set of the front-view images of
the KDEF dataset [9] in Figure 7. We note that the generator
successfully learns to manipulate facial expressions based
solely on the pre-trained embeddings (without the finetuning
stage). On the other hand, the BicycleGAN-based base-
lines collapsed to a single mode (over 3 different runs). This



Sampling using the mapper network 𝓜 Sampling from empirical N(μ, 𝜎)

Figure 8: Sixteen randomly sampled styles using both the mapper network M (left), as well as adhoc sampling from the
empirically computed N(µ, σ) distribution of a L2-regularized latent space (right). Adhoc sampling could sample bad style
codes outside the latent distribution (marked in red).

shows that our staged-training approach is stable and not sen-
sitive to hyper-parameters, unlike the BicycleGAN baselines
which will require careful hyper-parameter tuning to work
properly on this task. We also point out that the poor output
quality is mainly due to using a pixel-wise reconstruction
loss for the generator training, while the input-output pairs in
this dataset are not aligned. We didn’t investigate improving
the generator training as this is orthogonal to verifying the
generalization of encoder pre-training.

A.9. Style sampling comparison

Figure 8 compares style sampling using the mapper net-
work M vs adhoc sampling from the assumed N(µ, σ) of
an L2-regularized latent space, where µ, σ are empirically
computed from the training set. Note that adhoc sampling
can sometimes sample bad style codes outside the distribu-
tion (e.g. third image in first row, and first image in third row
in the right side of Figure 8), since the assumption that a L2-
regularized space would yield normally distributed latents
with zero mean and low standard deviation is not explicitly
enforced.

References
[1] Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao,

Jan Kautz, and Bryan Catanzaro. High-resolution image syn-
thesis and semantic manipulation with conditional gans. In
CVPR, 2018. 1

[2] Xudong Mao, Qing Li, Haoran Xie, Raymond YK Lau, Zhen
Wang, and Stephen Paul Smolley. Least squares generative
adversarial networks. In ICCV, 2017. 1

[3] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual

losses for real-time style transfer and super-resolution. In
ECCV, 2016. 1

[4] Karen Simonyan and Andrew Zisserman. Very deep convolu-
tional networks for large-scale image recognition. CoRR, 2014.
1

[5] Hsin-Ying Lee, Hung-Yu Tseng, Jia-Bin Huang, Maneesh Ku-
mar Singh, and Ming-Hsuan Yang. Diverse image-to-image
translation via disentangled representations. In ECCV, 2018. 1

[6] Jun-Yan Zhu, Richard Zhang, Deepak Pathak, Trevor Darrell,
Alexei A Efros, Oliver Wang, and Eli Shechtman. Toward
multimodal image-to-image translation. In NeurIPS, 2017. 1,
3

[7] Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, et al.
Deep face recognition. In bmvc, volume 1, page 6, 2015. 5

[8] Wu Jie. Facial expression recognition. https://
github.com/WuJie1010/Facial- Expression-
Recognition.Pytorch, 2018. Accessed: 2019-09-22.
5

[9] KDEF. Karolinska directed emotional faces (kdef) dataset.
http://kdef.se, 2017. Accessed: 2019-09-22. 5

https://github.com/WuJie1010/Facial-Expression-Recognition.Pytorch
https://github.com/WuJie1010/Facial-Expression-Recognition.Pytorch
https://github.com/WuJie1010/Facial-Expression-Recognition.Pytorch
http://kdef.se

