
Appendix

A. Derivation of the Kullback-Leibler
Divergence of Laplace Distributions

The Kullback-Leibler (KL) divergence between a prob-
ability distribution q(x) and a reference distribution p(x) is
defined as follows:

D(p(x)‖q(x))
= H(p(x), q(x))−H(p(x))

= −
∫ ∞
−∞

p(x) log q(x)dx+

∫ ∞
−∞

p(x) log p(x)dx

(33)

where H(p(x)) is the entropy of p(x) and H(p(x), q(x)) is
the cross entropy between p(x) and q(x). When both p(x)
and q(x) are Laplace distributions,

p(x) =
1

2b1
exp

(
−|x− µ1|

b1

)
(34)

and

q(x) =
1

2b2
exp

(
−|x− µ2|

b2

)
, (35)

the cross entropy becomes

H(p(x), q(x))

= −
∫ ∞
−∞

p(x) log q(x)dx

=

∫ ∞
−∞

|x− µ2|
2b1b2

exp

(
−|x− µ1|

b1

)
dx+ log(2b2).

(36)

To evaluate the integral, consider the case when µ1 ≥ µ2,∫ ∞
−∞

|x− µ2|
2b1b2

exp

(
−|x− µ1|

b1

)
dx

=

∫ µ2

−∞

µ2 − x
2b1b2

exp

(
−µ1 − x

b1

)
dx

+

∫ µ1

µ2

x− µ2

2b1b2
exp

(
−µ1 − x

b1

)
dx

+

∫ ∞
µ1

x− µ2

2b1b2
exp

(
−x− µ1

b1

)
dx

(37)

and when µ1 < µ2,∫ ∞
−∞

|x− µ2|
2b1b2

exp

(
−|x− µ1|

b1

)
dx

=

∫ µ1

−∞

µ2 − x
2b1b2

exp

(
−µ1 − x

b1

)
dx

+

∫ µ2

µ1

µ2 − x
2b1b2

exp

(
−x− µ1

b1

)
dx

+

∫ ∞
µ2

x− µ2

2b1b2
exp

(
−x− µ1

b1

)
dx.

(38)

Evaluating each of the integrals produces the following re-
sult: ∫ ∞

−∞

|x− µ2|
2b1b2

exp

(
−|x− µ1|

b1

)
dx

=


b1 exp

(
−µ1−µ2

b1

)
+(µ1−µ2)

b2
, µ1 ≥ µ2

b1 exp
(
−µ2−µ1

b1

)
+(µ2−µ1)

b2
, µ1 < µ2.

(39)

Altogether, the cross entropy between two Laplace distribu-
tion is

H(p(x), q(x))

= −
∫ ∞
−∞

p(x) log q(x)dx

=
b1 exp

(
− |µ1−µ2|

b1

)
+ |µ1 − µ2|

b2
+ log(2b2)

(40)

and the entropy of a Laplace distribution is

H(p(x)) = −
∫ ∞
−∞

p(x) log p(x)dx = 1+ log(2b1). (41)

As a result, the KL divergence between two Laplace distri-
butions is

D(p(x)‖q(x))

=
b1 exp

(
− |µ1−µ2|

b1

)
+ |µ1 − µ2|

b2
+ log

b2
b1
− 1.

(42)

B. Proof of Differentiability
In Section 4.2, we utilize a second-order approximation

of our proposed loss function (Equation (16)) about zero to
illustrate its relationship with the Huber loss (Equation (4)).
In this section, we will derive the first and second deriva-
tives of our loss and prove their existence at zero.

Equation (16) can be written as follows:

Dα,β(x) =


α exp(− xα )+x−α

β x ≥ 0
α exp( xα )−x−α

β x < 0.
(43)

Therefore, its first derivative is

D′α,β(x) =


1−exp(− xα )

β x ≥ 0

− 1−exp( xα )
β x < 0

=
sgn(x)

β

(
1− exp

(
−|x|
α

))
,

(44)

and its second derivative is

D′′α,β(x) =


exp(− xα )

αβ x ≥ 0
exp( xα )
αβ x < 0

=
1

αβ
exp

(
−|x|
α

)
.

(45)



To prove the existence of the derivatives at x = 0, we need
to show that both Dα,β(x) and D′α,β(x) are differentiable
at x = 0. The derivative of any function f(x) at x = a is
defined as follows:

f ′(a) = lim
x→a

f(x)− f(a)
x− a

. (46)

The function f(x) is said to be differentiable at x = a when
the limit exists. To prove our claims, we will rely heavily
on the following well-known identity:

lim
x→0

(1 + x)
1
x = e. (47)

Claim 1. The following function is differentiable at x = 0:

Dα,β(x) =
α exp

(
− |x|α

)
+ |x| − α

β
(48)

when α > 0 and β > 0.

Proof. The derivative of Dα,β(x) at x = 0 is defined as

D′α,β(0) = lim
x→0

α exp
(
− |x|α

)
+ |x| − α

βx

= lim
x→0

α
(
exp

(
− |x|α

)
− 1
)

βx
+ lim
x→0

|x|
βx

.

(49)

The right limit of the first term is equal to the following:

lim
x→0+

α
(
exp

(
− x
α

)
− 1
)

βx
= lim
u→0+

− u

β log(u+ 1)
(50)

where we substitute u = exp(−x/α) − 1 in for x; there-
fore, x = −α log(u + 1) and u → 0 as x → 0. Utilizing
Equation (47), the limit becomes

lim
u→0+

− u

β log(u+ 1)
= lim
u→0+

− 1

β log(u+ 1)
1
u

= − 1

β log
(
limu→0+(u+ 1)

1
u

)
= − 1

β
.

(51)

Similarly, for the left limit of the first term,

lim
x→0−

α
(
exp

(
x
α

)
− 1
)

βx
= lim
v→0−

v

β log(v + 1)
=

1

β
(52)

where we substitute v = exp(x/α) − 1 in for x; as a result,
x = α log(v + 1) and v → 0 as x → 0. Furthermore, the
right limit of the second term is

lim
x→0+

|x|
βx

= lim
x→0+

x

βx
=

1

β
, (53)

and the left limit is

lim
x→0−

|x|
βx

= lim
x→0−

− x

βx
= − 1

β
. (54)

By adding both terms together, both sides of the limit
become zero, which means the limit exists and proves
Dα,β(x) is differentiable at x = 0.

Claim 2. The following function is differentiable at x = 0:

D′α,β(x) =
sgn(x)

β

(
1− exp

(
−|x|
α

))
(55)

when α > 0 and β > 0.

Proof. The derivative of D′α,β(x) at x = 0 is defined as

D′′α,β(0) = lim
x→0

sgn(x)
(
1− exp

(
− |x|α

))
βx

. (56)

The right limit is equal to the following:

lim
x→0+

1− exp
(
− x
α

)
βx

= lim
u→0+

u

αβ log(u+ 1)
(57)

where we substitute u = exp(−x/α) − 1 in for x; there-
fore, x = −α log(u + 1) and u → 0 as x → 0. Utilizing
Equation (47), the limit becomes

lim
u→0+

u

αβ log(u+ 1)
= lim
u→0+

1

αβ log(u+ 1)
1
u

=
1

αβ log
(
limu→0+(u+ 1)

1
u

)
=

1

αβ
(58)

Similarly, for the left limit,

lim
x→0−

−
1− exp

(
x
α

)
βx

= lim
v→0−

v

αβ log(v + 1)
=

1

αβ
(59)

where we substitute v = exp(x/α) − 1 in for x; as a result,
x = α log(v + 1) and v → 0 as x → 0. Therefore, both
sides of the limit are equal, which means the limit exists and
proves D′α,β(x) is differentiable at x = 0.

C. Proof of Inequalities
In Section 4.2, we state that the Huber loss, Hα(x), is

bounded below byDα,1/α(x) and above byDα/2,1/α(x), and
the bounds are tight. In this section, we prove these claims.
Since the loss functions are symmetric about x = 0, it is
sufficient to prove only when x ≥ 0.



Claim 3. The following inequality holds for all x ∈ R:

Hα(x)−Dα,1/α(x) ≥ 0 (60)

Proof. When 0 ≤ x ≤ α, the inequality is

1

2
x2 − αx+ α2 − α2 exp

(
−x
α

)
≥ 0 (61)

and it becomes

1

2
α2 − α2 exp

(
−x
α

)
≥ 0 (62)

when x ≥ α. The inequalities can be simplified by substi-
tuting y = x/α and dividing by α2. As a result, we now
need to prove

f1(y) =
1

2
y2 − y + 1− exp(−y) ≥ 0 (63)

when 0 ≤ y ≤ 1, and

f2(y) =
1

2
− exp(−y) ≥ 0 (64)

when y ≥ 1. Equation (63) is a well-known inequality and
can be proven by utilizing the mean value theorem. The first
and second derivative of f1(y) are

f ′1(y) = y − 1 + exp(−y) (65)

and
f ′′1 (y) = 1− exp(−y). (66)

When y ≥ 0, f ′1(y) ≥ 0 since f ′′1 (y) ≥ 0 and f ′1(0) = 0;
likewise, f1(y) ≥ 0 for the same reason, f ′1(y) ≥ 0 and
f1(0) = 0. The proof of the second inequality follows di-
rectly from the first. From Equation (63), we know that
exp(−1) ≤ 1/2; therefore, f2(y) ≥ 0 when y ≥ 1 since
exp(−y) is monotonically decreasing.

Claim 4. The following inequality holds for all x ∈ R:

Dα/2,1/α(x)−Hα(x) ≥ 0 (67)

Proof. The inequality is equal to

α2

2
exp

(
− 2

α
x

)
+ αx− α2

2
− 1

2
x2 ≥ 0 (68)

when 0 ≤ x ≤ α, and it is

α2

2
exp

(
− 2

α
x

)
≥ 0 (69)

when x ≥ α. Again, the inequalities can be simplified by
substituting y = 2x/α and dividing by α2/2, which results in
the following inequalities:

f3(y) = exp(−y) + y − 1− 1

4
y2 ≥ 0 (70)

when 0 ≤ y ≤ 2, and

f4(y) = exp(−y) ≥ 0 (71)

when y ≥ 2. The second inequality, f4(y) ≥ 0, clearly
holds for all y ∈ R; whereas, the first inequality, f3(y) ≥ 0,
is less obvious. The first and second derivative of f3(y) are

f ′3(y) = − exp(−y) + 1− 1

2
y (72)

and
f ′′3 (y) = exp(−y)− 1

2
. (73)

At y = 0, f ′3(0) = 0 and f ′′3 (0) = 1/2 > 0, and at
y = 2, f ′3(2) = − exp(−2) < 0. Since f ′′3 (y) has a single
root, f ′3(y) can have at most two roots by Rolle’s theorem.
Therefore, there exists a unique value, 0 < y0 < 2, where
f ′3(y0) = 0, and on the interval 0 ≤ y ≤ y0, f ′3(y) ≥ 0.
Moreover, by the mean value theorem, f3(y) ≥ 0 on that
interval, 0 ≤ y ≤ y0, since f ′3(y) ≥ 0 and f3(0) = 0. Note
that f ′3(y) ≤ 0, or equivalently

exp(−y) ≥ 1− 1

2
y (74)

on the interval y0 ≤ y ≤ 2. Consequently, to complete the
proof of f3(y) ≥ 0, we just need to show that

1− 1

2
y ≥ 1− y + 1

4
y2 (75)

or correspondingly

f5(y) = −
1

4
y2 +

1

2
y ≥ 0 (76)

when y0 ≤ y ≤ 2. The roots of f5(y) are at y = 0 and
y = 2, since f5(1) = 1/4 > 0, f5(y) ≥ 0 on the interval
0 ≤ y ≤ 2.

Claim 5. For all x ∈ R, Hα(x) is tightly bounded between
Dα,1/α(x) and Dα/2,1/α(x). Therefore, the inequalities

Dα,1/α(x) ≤ Dα1,β1
(x) ≤ Hα(x) (77)

and
Hα(x) ≤ Dα2,β2(x) ≤ Dα/2,1/α(x) (78)

hold only, for all x ∈ R, when α1 = α, α2 = α/2, and
β1 = β2 = 1/α.

Proof. The inequalities are equivalent to

Dα,1/α(x)−Hα(x) ≤ Dα1,β1
(x)−Hα(x) ≤ 0 (79)

and

0 ≤ Dα2,β2
(x)−Hα(x) ≤ Dα/2,1/α(x)−Hα(x). (80)



As x goes to infinity,

lim
x→∞

Dα/2,1/α(x)−Hα(x) = 0 (81)

lim
x→∞

Dα,1/α(x)−Hα(x) = −
1

2
α2 (82)

and

lim
x→∞

Dα∗,β∗(x)−Hα(x) =


∞, β∗ <

1
α

α
(
1
2α− α∗

)
, β∗ =

1
α

−∞, β∗ >
1
α .

(83)
For the inequalities to hold in the limit, β∗ must equal 1/α
regardless of the value of α∗, α2 must equal α/2, and α1

must be between α/2 and α, inclusively. Now, we need to
demonstrate that there exists an x ∈ R where

Dα1,1/α(x)−Hα(x) > 0 (84)

when α/2 < α1 < α. The inequality is equal to

α

(
α1 exp

(
− x

α1

)
+ x− α1

)
− 1

2
x2 > 0 (85)

when 0 ≤ x ≤ α. To simplify the inequality, let us set
α1 = α/γ, substitute y = γx/α, and divide by α2/γ where
1 < γ < 2, which results in the following inequality:

f6(y) = exp(−y) + y − 1− 1

2γ
y2 > 0 (86)

when 0 ≤ y ≤ γ. The first and second derivative of f6(y)
are

f ′6(y) = − exp(−y) + 1− 1

γ
y (87)

and
f ′′6 (y) = exp(−y)− 1

γ
. (88)

At y = 0, f ′6(0) = 0 and f ′′6 (0) = 1 − 1/γ > 0 for
1 < γ < 2, and at y = γ, f ′6(γ) = − exp(−γ) < 0. Like
before, by Rolle’s theorem, f ′6(y) can have at most two
roots since f ′′6 (y) has a single root. Therefore, there ex-
ists a unique value, 0 < y0 < γ, where f ′6(y0) = 0, and on
the interval 0 < y < y0, f ′6(y) > 0. Again, by the mean
value theorem, f6(y) > 0 on that interval, 0 < y < y0,
since f ′6(y) > 0 and f6(0) = 0. Therefore, α1 must equal
α for the original inequalities to hold.

D. Experimental Validation of Target Approx-
imation

In Section 6, we claim the target width and target height
can be approximated with the percentage change between
the anchor and the ground-truth. To validate the approxima-
tion, we train the Faster R-CNN model with the following
targets:

t∗w =
w∗

wa
− 1 (89)

and
t∗h =

h∗

ha
− 1. (90)

No other changes were made to the implementation. Refer
to Section 7.1, for details on the training and evaluation pro-
cedure. The results of the experiment are shown in Table 5.
Only a very slight degradation in performance is observed
by replacing the targets with its approximation, which we
believe validates our use of the approximation in our inter-
pretation of the loss functions.

Table 5: Target Performance

Target Mean Average Precision (mAP) @
0.5 IoU 0.75 IoU 0.5-0.95 IoU

Original 44.7 23.1 23.8
Approximation 44.6 23.0 23.7

E. Evaluation of Proposed Loss Function
Although our goal is to understand the Huber loss and

not to replace it, for the sake of completion, we demonstrate
that replacing the Huber loss with our proposed loss func-
tion produces comparable results. As mentioned in Sec-
tion 4.2, minimizing the loss function Dα/2,1/α is equiva-
lent to minimizing an upper-bound on the Huber loss Hα.
Therefore, for this experiment we simply replace Hα with
Dα/2,1/α with no other modifications to Faster R-CNN. Re-
fer to Section 7.1, for details on the training and evaluation
procedure. The results are shown in Table 6. The perfor-
mance of the loss functions are nearly identical, which is
expected due to the similarity of the functions.

Table 6: Loss Function Performance

Loss Function Mean Average Precision (mAP) @
0.5 IoU 0.75 IoU 0.5-0.95 IoU

Hα 44.7 23.1 23.8
Dα/2,1/α 44.7 23.3 23.8


