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Overview
This supplementary material contains five parts:

* Section I: provides more visual results of shape gen-
eration.

* Section 2: provides experiments on 3D-VAE model.

e Section 3: describes the settings for our simulation
based stability annotation.

* Section 4: provides experiments on shape optimization
task paired with gradient visualization, and compari-
son to several baselines.

 Section 5: provides comparison to [5].

1. Qualitative results for shape generation

In this section, we collect additional visual results about
the proposed method that due to lack of space were not in-
cluded in the main manuscript. Figure 1 compares the shape
generation quality of baselines [3, 12] with our approach
while emphasizing the importance of combining connectiv-
ity and stability losses.

2. Experiments with 3D Variational Auto-
Encoder (3D-VAE)

We present further experiments using 3D-VAE to
demonstrate the generalization power of our approach to
different architectures and shape representations.

Network architecture We employ a symmetric architec-
ture where the encoder and the decoder consist of the same
number of layers. Specifically, the encoder downsamples
the input shape of resolution 32 using three convolutional
layers with ReLU activation, followed by a batch normal-
ization layer. All convolutional layers have a kernel size of

4 x 4 x 4, stride of 2 and filter sizes of respectively 32, 16,
and 8. The output vector is then fed to two fully connected
layers with Relu activation function that generates the 128 D
latent vector z. The decoder follows a similar architecture
for upsampling except that we use a sigmoid activation for
the last layer.

Training Similarly to the description provided in the
main manuscript in Section 3.5, the training process is de-
composed into two phases. During the first training phase,
the network is trained using a binary cross-entropy (BCE)
loss and a variational loss [8]. For the second phase, we
finetune the decoder using our physical losses along with
a regularization loss. Differently from the previous exper-
iments, we update the decoder weights this time since we
empirically found it to improve the results. Furthermore,
just for the shape auto-encoding experiment, we train a non-
variational version of our network (an auto-encoder AE) to
get a higher reconstruction performance.

Results

shape generation: We demonstrate how our physical
losses contribute in generating more realistic shapes. In
Figure 2, we make a qualitative comparison between our
technique and the baseline by randomly sampling latent
vectors that we decode using the baseline decoder and our
physically-aware decoder. The quantitative evaluations are
given in Table | including physical metrics. Our approach
leads to a more realistic shapes in terms of geometric qual-
ity and physical validity when combining both connectivity
and stability losses. We notice how the generated shapes
with our network are better connected but also realistic and
plausible. Specifically, our network manages to remove
noise and to add missing regions which emphasizes the
complementarity between generative loss (here reconstruc-
tion and variational losses) and the physical losses.

We also demonstrate the generalization power across dif-
ferent categories by showing in Figure 4 results when learn-
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Figure 1: Visual results for 3D shape generation. We sample vectors from the latent space from IM-NET [3] and PQ-NET [12] that we
decode using: Top row (Baseline): the baseline network. Problematic regions in baseline shapes are marked by red ovals. Middle row
(Ours B+T): Our generative network with topological loss only. Bottom row (Ours B+P): our generative network with both physical losses.

The resulting shapes become more connected and physically stable.

ing on Table and Airplane categories. The common trend of
generation quality improvement when using physical losses
holds true for different categories.

shape auto-encoding: We measure the reconstruction
performance of our network and highlight the contribution
of the physical losses in enriching 3D shape understand-

ing. Table 2 and Figure 3 display quantitative and qual-
itative evaluations respectively. We observe that, as ex-
pected from results reported by previous experiments in
the main manuscript, our approach reconstructs shapes effi-
ciently while better preserving their physical quality.
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Figure 2: Visual results for 3D shape generation. We sample vec-
tors from the latent space of our baseline 3D-VAE that we decode
using (top row) baseline decoder and (bottom row) our generative
network with the proposed physical losses. The resulting shapes
become more realistic.
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Figure 3: Visual results for 3D shape auto-encoding. Ground truth
test shapes (top row) are reconstructed using the baseline AE (mid-
dle row) where problematic regions are marked with red ovals, and
our AE (bottom row) where the decoder is further trained using
physical losses. Physical reasoning enhances the reconstruction
performance.

\ 3D-VAE
Net [ MMD [ COV | CC CR CR@1 [ PW VR
B 821 | 495 | 460 | 20.67% | 363% | 2.84 | 11.8%
B+T | 8.03 | 524 | 276 | 42.60% | 64.2% | 538 | 30.9%
B+S | 7.84 | 55.6 | 325 | 3540% | 54.9% | 6.94 | 29.0%
B+P | 800 | 53.9 | 2.74 | 42.63% | 64.4% | 5.82 | 31.6%

Table 1: Quantitative evaluation for shape generation. B: baseline
network; B+T: our network with topological loss only; B+S:our
network with stability loss only; B+P: our network with both phys-
ical losses. MMD is multiplied by 10 and PW by 10?. Combining
both physical losses improves the generated shapes quality.

3. Simulation Setting

In addition to the metric PW introduced in the main
manuscript in Section 4.1, we also use a simulation-based
method to evaluate the physical stability of 3D shapes.
Note that both metrics are highly correlated. Given a set
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Figure 4: Visual results for 3D shape generation. We evaluate our
approach for other shape categories Table (8218 shapes) from Part-
Net [7] and Airplane (4045 shapes) from Shapenet [2]. Note that
we follow the learning process detailed in the main manuscript ex-
cept for the airplane category where we only use topological loss.
For each shape category, the top row shows the baseline generated
shapes and the bottom row the generated shapes using our net-
work. The generation quality improvement when using physical
losses holds true for different categories.

\ 3D-VAE \
Net | loU | CC CR CR@I [ PW | VR
B 7316 | 1.85 | 65.70% | 76.15% | 7.75 | 61.70%
B+T | 73.00 | 1.64 | 72.12% | 84.70% | 7.33 | 65.12%
B+S | 7321 | 1.85 | 65.95% | 76.06% | 7.92 | 61.99%
B+P | 73.09 | 1.66 | 7121% | 81.57% | 7.59 | 66.18%

Table 2: Quantitative evaluation for shape auto-encoding. B:
baseline network; B+T: our network with topological loss only;
B+S:our network with stability loss only; B+P: our network with
both physical losses. IoU and PW are multiplied by 10%. Empow-
ering the network with physical understanding helps reconstruct-
ing realistic shapes.

of shapes to evaluate, we can find a PW threshold above
which shapes are stable according to the physical simula-
tion and vice-versa. In our experiments where shapes are
normalized within unit sphere and have equal mass and uni-
form volumetric mass density, this threshold approximately
equals 0.01. Nevertheless, we use the physical simulation
in addition to PW since it is generalizable to other physical
settings and constraints.

We propose a simulation based-approach to assess a
given 3D shape stability. To this end, we use PyBullet [4] as
a physical engine to simulate the shape behavior when sub-
jected to gravity and to trivial perturbation forces. Specif-
ically, the shape and the plane are imported with URDFs
including the center of mass, the mass and the inertia ma-
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Figure 5: Simulation results. We simulate the behavior of two
shapes (top row) using PyBullet [4]. The final simulation states
(middle row) reflect whether the shapes are stable or not. We show
the different simulation curves that record the center of mass ver-
tical position (bottom row). Each curve corresponds to one sim-
ulation. Random perturbation forces are exerted on the shapes
resulting in changing the center of mass position. Stable shape
(left) manages to recover its initial state (label= 1), while unsta-
ble shape (right) loses its stability and fall (Ilabel= 0).

trix. We use the default Coulomb friction model and con-
sider a coefficient of bouncyness for the shape plane contact
equal to 0 (inelastic). Note that the generated 3D shapes are
pre-aligned to the common up direction and vertical facing
direction. We simulate the dropping of each shape from a
height equal to 0.1 times shape height for 3000 time steps
of 0.008s while applying small perturbations. If the shape
doesn’t recover its initial orientation, then it is is unstable
(label=0), otherwise the shape is labeled stable (label=1).
(see Figure 5). We combine this binary metric with PW to
get a complete understanding and fair comparison of phys-
ical stability quality.

We recall that the physical simulation is used to annotate
the learning set of the neural stability predictor and to com-
pute V R (see Sections 3.3 and 4.1 respectively in the main

paper).

4. Single Shape Optimization

Method. Note that our approach aims at generating plau-
sible shapes in a single forward pass. Here, we consider

the particular task of single shape optimization to both ex-
plain the functioning of our physical losses and to compare
the latter to concurrent approaches. Using notations similar
to that of the main paper, we randomly sample latent vec-
tors zp € V and optimize 2y to obtain physically plausible
shape. Formally, we compute

Z =argmin ||z — zoll2 + @cLeonn(2) + @sLstab(2), (1)

with o, and a; weighting coefficients.

Results. For each generative network G among IM-NET
[3] and PQ-NET [12], we provide visual results paired
with gradient visualization over the optimization steps in
Figures 7 and 8 respectively.

IM-NET [3] based optimization is performed by decod-
ing latent vectors at resolution 32 (G(z)) which are then fed
to the physical modules as explained in our paper. Figure
7 shows the evolution of G(z) over the optimization steps.
We also display the meshes corresponding to the initial
and final shapes, G(zp) and G(2) respectively, decoded
at resolution 256. For connectivity optimization, the loss
gradient is non null only in voxels that link connected
components. As for the stability optimization, We display
normalized gradient values. For clarity of visualization, we
set gradients in voxels that remain outside the shape surface
to O to avoid blur. Remark that the gradient has higher
negative values around missing parts (to add geometry)
and higher positive values at redundant parts (to remove
geometry) for reaching stability. In general, both physical
losses manage to correct the initial non valid shape. We
highlight that combining both losses is necessary to obtain
optimal results. For instance, consider the example from
the second row in Figure 7a. We remark that topology
loss manages to recover shape connectivity. However, the
resulting shape is connected but unstable. To see this,
we expect that removing the disconnected geometry from
the front leg leads to connecting the shape with minimum
geometry variation, as advised by the loss function. Conse-
quently, the need for an additional stability term to rather
promote the solution based on lengthening the front leg
proves necessary. This is illustrated by Figure 7c first row,
where we optimize the same latent vector using both losses.

PQ-NET [12] based optimization is performed by
decoding latent vectors at part resolution 32. Note that
for the other experiments in the main paper we decrease
the resolution to 16 for the connectivity module only, for
memory cost. Similarly to the experiments above, Figure
8 shows the evolution of G(z) as well as the initial and
final shape meshes obtained by decoding G(zp) and G(2)
at resolution 256. The connectivity module is applied on
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Figure 6: Visual results for 3D shape optimization based on IM-
Net [3] model. (a) The input shape to optimize represented by its
latent vector zp and the corresponding occupancy field V; at res-
olution 32. (b) Output shape achieved by geometry optimization
V = argminy L.(V) + ||V — Vo||. (c) and (d) Output shape
achieved by latent optimization 2 = argmin, L.(z) + ||z — zo||
decoded at resolution 32 and 256 respectively. The direct ge-
ometry optimization follows the path with minimum variations to
correct the shape, while the latent optimization approach demon-
strates an understanding of the shape structure and delivers plausi-
ble result.

part occupancy fields. To understand this, the shape points
in Figure 8a with black contour correspond to part voxel
centers that belong to shape geometry (have occupancy
value bigger than 0.5). We also display the gradient values
among all parts occupancy fields represented by the voxel
centers colored by gradient intensity. The connectivity
loss gradient is non null only in voxels that link connected
components. As for the stability optimization, we feed the
point cloud shape obtained as described in the main paper
to the physical module. Figure 8b shows the evolution
of the decoded point cloud, starting from the first shape,
along with the physical stability gradient arrows. Gradient
arrows are multiplied by -1 to show the displacement
direction promoted by the stability loss. Remark that, in
general, gradient arrows point towards enlarging the shape
basis, this in line with stability intuition. Besides, since
connectivity is ill-defined when working with point clouds,
the obtained shapes illustrate a sufficient evolution towards
stable result while suffering from connectivity failures.
Consider the example from the second row in Figure 8b.
The stability optimization attempts to recover the missing
legs. It however misses the connectivity requirement.
An optimal result is achieved when conducting the same
experiment using both losses as demonstrated in the second
row from Figure 8c.

Overall, the achieved results reveal the efficiency of our
physical losses, and confirm the relevance of combining
generative modeling with physical reasoning to produce
shapes that are both visually plausible and physically valid.

Comparison to several baselines

¢ In relation to the work in [6], their post-processing al-
gorithm needs part relationship annotations including

Adjacent and Support that we don’t require. Besides,
it only addresses connectivity via part adjacency and
support via equal parts height (see Figure 7 in [0]).
Our approach is significantly more generic and handles
more diverse and challenging failures. Please also note
that all our losses are fully differentiable and can also
be used for post-processing via test-time optimization.

* In contrast to [ 1] that proposes a shape optimization al-
gorithm, we consider the task of shape generation that
requires particular attention to the generated shape vi-
sual quality as well. To this end, instead of directly
optimizing the generated shape parameters, we rather
optimize its latent representation in order to constrain
the search space to the learned latent space of plausible
objects. For the sake of clarity, Figure 6 compares both
optimization approaches performed on example input
(6a) sampled using IM-Net[3]-based generator. While
the direct geometry optimization (6b) follows the path
with minimum variations to correct the shape, the la-
tent optimization (6¢) approach demonstrates an un-
derstanding of the shape structure and produces more
plausible result. Furthermore, the latent optimization
allows to decode the optimal shape at high resolution
(6d). This is not feasible when directly optimizing the
shape geometry.

* Several other approaches [9, 10, 13] also focused on
shape stability optimization. These approaches only
consider shape deformation or shape carving tech-
niques to stabilize the shape. These operations are not
sufficient in our case. In fact, we need more compli-
cated shape modifications such as part addition.

5. Comparison to the topological layer in [5]

Learning deep generative network using topological pri-
ors is pioneered by [5]. In relation to their work, our topo-
logical regularization differ in several key aspects. First,
our definition of the connected components takes into ac-
count the iso-surface values between the birth and death
intervals. Second, we operate in the latent space and we
found that this prevents the generative model from collaps-
ing. Finally, the implementation of [5] counts on the full
(including higher-dimensional) homology and uses a sim-
plicial complex, whereas we use the cubical complex and
directly compute 0-dimensional homology only. This re-
sults in our topology loss being 225 times faster than when
using levelset_dionysus.Diagramlayer from [5] code (their
other LevelSetLayer doesn’t support cyclic complex), which
is essential for making the network training tractable. For
completeness, we ran their suggested approach on 3DGAN
[11] with our experimental data and found that their finetun-
ing leads to a connection ratio C'R of 20.8% compared to
42.6%, achieved by our closest architecture 3DVAE. Note



(c) Physical optimization based on IM-Net [3]; o = 0.001, a5 = 1

Figure 7: Visual results of IM-Net [3] based shape optimization.
(a) (b) From left to right: initial shape at resolution 256, 4 interme-
diate shapes at resolution 32 paired with gradient values, the final
shape at resolution 256. (c) From left to right: initial shape, 4 in-
termediate shapes and final shape at resolution 256. All shapes are
randomly sampled from the latent space. Connectivity and stabil-
ity losses deliver connected and stable shapes respectively while
being visually plausible.

that their topological regularization helps reducing noise but
in most cases do not connect shape parts. In fact, longer
training is needed to improve connectivity. However, this
leads to deviating from original shapes and to reducing
shape quality. We sidestep this problem by carefully se-
lecting the connected components to optimize based on iso-
surface values so that we avoid unnecessary shape varia-
tions.

Timing Our topology layer takes 0.96s and 0.005s for the
forward and backward passes respectively when applied on
a batch of 32 occupancy grids of resolution 32 on Intel Xeon
5220 Gold CPU.

(a) Connectivity optimization based on PQ-Net [12]; ac = 0.001, s = 0

(b) Stability optimization based on PQ-Net [12]; ac = 0,05 = 1

-l

(c) Physical optimization based on PQ-Net [12]; o = 0.001, a5 = 1
Figure 8: Visual results of PQ-Net [12] based shape optimization.
(a) (b) From left to right: initial shape at part resolution 256, 4
intermediate shapes at part resolution 32 paired with gradient val-
ues, the final shape at part resolution 256. (c) From left to right:
initial shape, 4 intermediate shapes and final shape at part resolu-
tion 256. All shapes are randomly sampled from the latent space.
Combining connectivity and stability losses yields the best results.
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