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A. Overview

In this supplementary document, we provide further de-
tails about our appearance learning pipeline (§ B), used
baselines (§ C), and an extended ablation study (§ D).

B. Network architecture details

We provide further details on the Fusion Network and
the Appearance Rendering module presented in Figure 3.

The Fusion Network is displayed in Figure B.1 and rep-
resents one part of the Appearance Fusion module (Fig-
ure 3). It takes as input three image maps – the upsampled
input image that needs to be fused Ikt ∈ RkH×kW×C , a fea-
ture map F̂t−1 that is rendered from existing scene content
St−1, and optional meta features M̂t−1 – and produces a
new blended feature map F̂t that needs to be integrated into
the representation.

This component consists of three modules 1) the Feature
Embedding learnable linear layer, implemented as a 1 × 1
convolutional layer, which compresses features of the con-
catenated input maps (F̂t−1 ⊗ M̂t−1 ⊗ Ikt ) into an interme-
diate feature map RkH×kW×35, 2) the Blending Network
that comprises of four convolutional blocks interleaved with
LeakyReLU and dropout layers, and 3) the linear Feature
Compression layer W : RkH×kW×70 7→ RkH×kW×c that
creates the new blended feature map F̂t. This new fea-
ture map is then integrated into the scene representation
as described in the paper by updating the scene content
(St−1 7→ St).

The updated scene content is then rendered F̂ ′t ∈
RkH×kW×c via the introduced differentiable projection
module Π. The Appearance Rendering module (Figure B.2)
takes this rendered feature map and decompresses its fea-
tures into a higher resolution space with the linear Fea-
ture Decompression layer (transposed Feature Compression
layer WT : RkH×kW×c 7→ RkH×kW×70). The optional
meta features are concatenated to the uncompressed feature
channels and they are jointly propagated through the intro-
duced masked average pooling operator to reduce the spa-
tial dimension (kH, kW 7→ H,W ) and form an intermedi-
ate appearance feature map. This appearance feature map
is then refined by the Rendering Network (5 convolutional
blocks with a skip connection) and decoded as RGB values
by the three-layer perceptron Feature Decoder.

C. Baseline experiments
Several baselines are used in the paper for results dis-

played in Figure 4, 5, and 7.
We used publicly released code with default parameters

to run experiments for Fu et al. [23]3, SurfelMeshing [70]4,
Waechter et al. [87]5, and NeRF [49]6. The results for
other baselines (Texture Fields [54], SRNs [73], DeepVox-
els [72]) are released by the authors and we implemented
the TSDF Coloring [17] baseline as a straightforward ex-
tension of TSDF Fusion that accumulates color information
into voxel grids by the simple running mean algorithm.

Mesh files for Fu et al. [23] and Waechter et al. [87]
for the experiment on the ShapeNet [12] cars (Table 1) are
created by fusing depth frames into a grid with TSDF Fu-
sion and then extracting the meshes with a standard march-
ing cubes algorithm. These methods where provided by the
ground truth meshes for the novel view synthesis experi-
ment on the cat and the human dataset (Figure 4).

NeRF [49] was trained for each Replica room dataset
(Figure 5) for two days on a 24GB NVidia Titan RTX GPU.

D. Ablation study
We provide an extended ablation study for 5 feature and

3 color channels (5+3 configuration) in comparison to the
3+3 configuration in Table D.1.

Quantitative and qualitative results (Table D.1, Fig-
ure D.3 and D.4) demonstrate that additional two feature
channels are beneficial for the quality of rendered images.

3https://github.com/fdp0525/G2LTex
4https://github.com/puzzlepaint/surfelmeshing
5https://www.gcc.tu-darmstadt.de/home/proj/texrecon/
6https://github.com/bmild/nerf



!"#$%⨂'#
(
⨂)*#$% Feature

Embedding

intermediate	

feature	map

(ℝ(=×(?×@A	)

scene	update:	

F#$% ↦ F#	

3	convolutional	blocks	

(70-filter	Conv	+	LeakyReLU

+	Dropout	layer)

70-filter	

Conv	layer

Feature	

Compression

W

Fusion	Network

!"# ∈ ℝ
(=×(?×[	

Figure B.1. Fusion network architecture. This module is a part of our learned appearance fusion pipeline (Figure 3). It creates a blended
feature map F̂t that needs to be integrated into DeepSurfel representation..
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323, 6×6 643, 4×4 643, 6×6 1283, 3×3 1283, 6×6 GT

Figure D.3. Qualitative results of our model on unseen ShapeNet [12] car scenes for different DeepSurfel parameters. The col-
umn names denote DeepSurfel grid and patch resolution respectively. We used DeepSurfels with 3 feature and 3 color channels (3+3
configuration). A quantitative comparison is given in Table D.1.



323, 6×6 643, 4×4 643, 6×6 1283, 3×3 1283, 6×6 GT

Figure D.4. Qualitative results of our model on unseen ShapeNet [12] car scenes for different DeepSurfel parameters. DeepSurfels
with 5 feature and 3 color channels (5+3 configuration) demonstrate better results compared to our method with less channels (3+3)
displayed in Figure D.3. Quantitative comparison is given in Table D.1. The column name denotes DeepSurfel gird and patch resolution
respectively.



Method PSNR↑ SSIM↑
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SurfelMeshing [70] 13.92 0.2748
Waechter et al. [87] 18.27 0.4753
Fu et al. [23] 18.84 0.5196
TSDF Coloring [17] (323) 21.57 0.6375
TSDF Coloring [17] (643) 24.05 0.7552
TSDF Coloring [17] (1283) 26.68 0.8526
Ours Det. (323, 6×6, 3) 27.20 0.8723
Ours Det. (643, 4×4, 3) 28.73 0.9036
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) 323, 6×6, 3 + 3 28.89 0.8907

643, 4×4, 3 + 3 29.92 0.9086
643, 5×5, 3 + 3 30.15 0.9126
643, 6×6, 3 + 3 30.27 0.9147

1283, 2×2, 3 + 3 30.23 0.9133
1283, 3×3, 3 + 3 30.51 0.9181
1283, 4×4, 3 + 3 30.60 0.9196
1283, 5×5, 3 + 3 30.63 0.9200
1283, 6×6, 3 + 3 30.64 0.9202
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) 323, 6×6, 5 + 3 29.02 0.8955

643, 4×4, 5 + 3 29.93 0.9118
643, 5×5, 5 + 3 30.12 0.9154
643, 6×6, 5 + 3 30.22 0.9172

1283, 2×2, 5 + 3 30.21 0.9162
1283, 3×3, 5 + 3 30.45 0.9206
1283, 4×4, 5 + 3 30.54 0.9220
1283, 5×5, 5 + 3 30.56 0.9224
1283, 6×6, 5 + 3 30.58 0.9226

Table D.1. Extended ablation study on ShapeNet [12] cars.
Comparison of baselines and our method on different grid and
patch resolutions. The x+3 notation denotes disentangled x feature
channels and 3 color channels. Results indicate that our method on
a grid of 323 outperforms all baseline methods, including ones that
require a much higher grid resolution (TSDF Coloring 1283, Ours
Deterministic 643). An increased number of channels and higher
DeepSurfel resolution further benefits the quality of rendered im-
ages. Qualitative results for the 3+3 and 5+3 configuration are
displayed in Figure D.3 and D.4 respectively.
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