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A. Overview

In this supplementary document, we first provide details
about the proposed neural network modules (Sec. B) and
their training procedure (Sec. C). Then, we present more
qualitative and quantitative results that were not included in
the paper due to the page limit (Sec. D). We also discuss
the limitations of the proposed method (Sec. E). Lastly, we
summarize the notations used in the paper to improve paper
readability (Sec. F).

B. Network architecture

We first present details about the proposed neural en-
coders that are used to create the global feature vector
z ∈ R596 (128, 312, and 156 dimensions for structure,
shape, and pose features respectively) and then detail the
proposed neural network architectures.

B.1. Structure encoder

The structure encoder consists of 52 small multi-layer
perceptrons that are organized in a tree structure, where
each node of the tree corresponds to one joint in the human
skeleton and outputs a compact feature vector bk ∈ R6.

Each MLP node (Table B.1) takes as input a 19-
dimensional feature vector – 6 dimensions for the parent
feature, 9 for the rotation matrix, 1 for the bone length, and
3 for the joint location – and outputs a small bone code.
These bone codes are concatenated to form one structure
feature vector as explained in the main paper.

Since the root node does not have a parent node to be
conditioned on its feature vector b0 ∈ R6, we create b0 with
a single linear layer that takes as input vectorized θ pose
parameters and joint locations J.

B.2. PointNet encoder

We implement a PointNet encoder (Figure B.1) to en-
code a point cloud into a fix-size feature vector. This net-
work is used in Sec. 4.1.1 to create a 128-dimensional shape

Linear(19, 19) + bias
ReLU
Linear(19, 6) + bias
ReLU

Table B.1. The MLPs of the structure encoder. This compact
neural network architecture consists of 500 trainable parameters.

feature vector (P = 128 in Figure B.1) and two 100-
dimensional feature vectors for the inverse and the forward
LBS networks (P = 100).

B.3. Bone projection layers

The bone projection layers Πωk
: R596 7→ R12 create

small per-bone features zk and are implemented as efficient
grouped 1D convolutions [26].

B.4. ONet

The architecture of the occupancy network is similar to
the one proposed in [42] and is illustrated in Figure B.2.

B.5. Linear blend skinning networks

The inverse and the forward LBS networks are similar
and implemented as MLPs conditioned on a latent feature
vector (Figure B.3).
Forward LBS network. The latent feature vector for the
forward LBS network cfwd ∈ R200 is created as a concate-

𝑥 ∈ ℝ3 𝑓0 ∈ ℝ256

PointNet block (x 4)

𝑓1 ∈ ℝ𝑃 𝑓2 ∈ ℝ𝑃

𝑓𝑠𝑘𝑖𝑝 ∈ ℝ𝑃

𝑓𝑜𝑢𝑡 ∈ ℝ𝑃

ReLU ReLU

Figure B.1. PointNet architecture. The PointNet encoder en-
codes an arbitrary set of input points {x ∈ R3} into a feature
vector of length P . All layers except for the skip connections use
bias. Blue rectangular blocks are trainable linear layers. ⊕ opera-
tor is the element-wise sum.
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Figure B.2. ONet architecture. The occupancy neural network is
implemented as a multi-layer perceptron that consists of five ONet
blocks. Blue rectangular blocks are trainable linear layers. ⊕ op-
erator is the element-wise summation. CBN blocks are Condi-
tional Batch-Normalization blocks [14, 16, 42] followed by ReLU
activation function that are conditioned on the local point feature
zx ∈ R12 and the cycle-distance feature dx.



ONet block (x 3)

CBN CBN CBN
ℝ200 ℝ200

𝑐 𝑐𝑐
input 
point
ℝ3

LBS 
weights
ℝ52

Softmax
ℝ200

Figure B.3. The architecture of the inverse and the forward
LBS networks. Both networks use this architecture to regress
skinning weights. Blue rectangular blocks are trainable linear lay-
ers. ⊕ operator is the element-wise sum. ONet and CBN blocks
are introduced in Figure B.2. The feature vector c is cinv ∈ R280

for the inverse LBS network and cfwd ∈ R200 for the forward LBS
network.

nation of two 100-dimensional feature vectors created by
the PointNet encoder. One is created by encoding the esti-
mated canonical vertices ˆ̄V , and the other one is created by
encoding the estimated posed vertices V̂ .
Inverse LBS network. The latent feature vector for the in-
verse LBS network cinv ∈ R280 is created as a concatenation
of the conditional features produced for the forward LBS
network cfwd and an additional 80-dimensional feature vec-
tor created by a single linear layer that takes as input con-
catenated vectorized pose parameters and joint locations.

C. Training
We provide additional details for three independent train-

ing procedures. First, we train the inverse and the forward
LBS networks and then use these two modules as determin-
istic differentiable functions for the occupancy training.
Occupancy training. All modules except the LBS net-
works are trained together and have a total of about 1.5M
trainable parameters. For each batch, 1536 points are sam-
pled uniformly and 1536 near the surface (1024 in the posed
and 512 in the canonical space). Points that are sampled di-
rectly in the canonical space are not propagated through the
forward LBS network and are associate with pseudo ground
truth skinning weights wx̄ to calculate local codes zx.
The inverse LBS network has about 1.5M parameters.
Each training batch consists of 1024 uniformly sampled
points and 1024 points sampled around the mesh surface.
The forward LBS network has about 1.2M parameters.
Each training batch consists of 1024 points sampled in the
canonical space (512 uniformly sampled and 512 sampled
near the surface) and points that are sampled for the train-
ing of the inverse LBS network. The latter set of points
is mapped to the canonical space via the proposed pseudo
ground truth weights.

D. Additional experiments and results
We supplement experiments for generalization (Fig-

ure D.4), for learning LBS (Sec. D.1), and placing people

in scenes (Sec. D.2).

D.1. Evaluation of linear blend skinning networks

Our forward LBS network operates in the canonical
space and does not need to deal with challenging human
poses as the inverse LBS network. Here, we quantify the
performance gap between these two networks on the un-
seen portion of query points for three experimental setups
presented in the main paper.

As an evaluation metric, we report the l1 distance be-
tween pseudo ground truth weights and predicted weights
by the inverse linv1 and the forward lfwd1 LBS networks.

Quantitative results (Table D.2) show that the forward
LBS network consistently outperforms the inverse LBS net-
work across all settings. Furthermore, the inverse LBS net-
work performs worse when subjects are not seen during the
training.

D.2. Generating people in scenes

We provide additional qualitative results (Figure D.5) for
the experiment presented in Figure 5 and visualize SDF
(Figure D.7) that is used to compute the human-scene colli-
sion score. Although the SDF is very noisy, we still use it to
compute this score for a fair comparison with PLACE [72].

We further provide an experiment on a larger Replica
room [61]. Similar to Sec. 6.4, we sample 50 people from
PLACE [72] and select 60 human body pairs that interpen-
etrate. These pairs are then optimized with our method by
minimizing the proposed point-based loss (20).

Quantitative results (Table D.3) demonstrate that our ap-
proach improved collision scores over the baseline [72], ex-
cept for the human-scene score which is unreliable due to
the aforementioned noisy SDF (Figure D.7). The qualita-
tive results displayed in Figure D.6 show that our method
successfully resolves deep interpenetrations with scene ge-
ometry which could not be straightforwardly achieved with
differentiable mesh-based collision methods – for example,
a modified version of the approach presented in [62]. This
indicates that our volumetric error signal is more effective
than the surface error signal imposed by mesh-based meth-
ods.

E. Limitations
We observed some challenging scenarios in which our

learned inverse linear blend skinning network may fail to
correctly map a query point to the canonical space and con-
sequently distort occupancy in the posed space. This prob-
lem occurs when the network is not well trained and two
body parts are close to each other or even self-intersect. An
example of a failure case of an unseen subject is displayed
in Figure E.8. Therefore, a promising future direction is
to explicitly model self-contact for learning the occupancy
representation.



Figure D.4. Generalization experiment. Qualitative results for the generalization experiment (Sec. 6.3, Table 2) for DFaust [5] unseen
poses (top row) and MoVi [20] unseen subjects (bottom row).

Experiment type linv1 ↓ lfwd1 ↓
Multi-person occupancy (Sec. 6.2) 0.1894 0.1252
Generalization: unseen poses (Sec. 6.3) 0.1997 0.0818
Generalization: unseen subjects (Sec. 6.3) 0.2138 0.1098

Table D.2. Evaluation of the inverse and the forward linear blend skinning networks. Reported l1 distance shows that the forward
LBS network consistently outperforms the inverse LBS network across all experiment settings. This is expected because the inverse LBS
network reasons about different body shapes and poses, while the fwd-LBS network reasons only about body shapes since the pose in the
canonical space is constant. ”Multi-person” and ”unseen poses” experiments are performed on the DFaust [5] dataset, while the ”unseen
subjects” experiment is performed on the MoVi [20] dataset. More details on the experimental setups are available in the paper (Sec. 6.2,
Sec. 6.3).

F. Notation
Lastly, we summarize the key notation terms in Table F.4

for improved readability.

Room 1 (Figure D.5) Room 2 (Figure D.6)
Collision score PLACE [72] Ours PLACE [72] Ours

human-scene ↓ 5.72% 5.72% 0.34% 1.20%
scene-human ↓ 3.51% 0.62% 0.98% 0.77%
human-human ↓ 5.73% 1.06% 7.64% 1.09%

Table D.3. Improved PLACE [72]. Results on two Replica [61] rooms. Our proposed optimization method successfully mitigates
interpenetrations between scene geometry and other humans. Note that the human-scene score is unreliable metric due to noisy scene
SDF.



PLACE [72] Our optimization

Figure D.5. Improved PLACE [72]. Additional viewpoints of a Replica room [61] for results presented in the paper (Figure 5). Our
point-based loss effectively resolves collisions of the human pairs. Quantitative results are reported in Table D.3.



PLACE [72] Our optimization

Figure D.6. Improved PLACE [72]. Results demonstrate that our method can resolve challenging interpenetrations with scene geometry.
Note that this complex penetrations with the thin mesh geometry cannot be straightforwardly fixed with mesh-based intersection methods
[62] that impose a surface-based error signal. This demonstrates that our flexible volumetric point-based loss is more efficient, which is
quantified by the improved collisions scores displayed in Table D.3.



Figure D.7. Noisy SDF that is used to compute the human-scene
score for results presented in the paper (Sec. 6.4, Table 3, Fig-
ure 5).

Figure E.8. Failure case. An example of an unseen MoVi [20]
subject when two hands self-intersect. The inverse LBS network
may incorrectly map a given query point to the canonical space
for self-intersected regions which consequently distorts occupancy
representation in the posed space.

Input parameters

K ∈ R : the number of input bones (52)
x ∈ R3 : query point
Gk ∈ R4,4 : bone transformation matrix of part k

SMPL parameters

N : the number of vertices (6890)
S : shape blendshape parameters
P : pose blendshape parameters
W : blend weights
J : joint regressor matrix
T̄ ∈ RN,3 : template mesh
V ∈ RN,3 : mesh vertices
V̄ ∈ RN,3 : canonical mesh vertices

SMPL functions

BP : pose blendshape function
BS : shape blendshape function

Estimated parameters

ˆ̄x ∈ R3 : estimated canonical point
V̂ ∈ RN,3 : estimated mesh vertices
ˆ̄V ∈ RN,3 : estimated canonical mesh vertices
wx̂ ∈ RK : weights predicted by the inverse LBS network
wˆ̄x ∈ RK : weights predicted by the forward LBS network

Table F.4. Notation summary.
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