
Convolutional Hough Matching Networks
—Supplementary Material—

Juhong Min Minsu Cho

POSTECH CSE & GSAI
http://cvlab.postech.ac.kr/research/CHM/

In this supplementary material, we provide additional re-
sults and analyses, and implementation details.

1. Additional results and analyses
Analysis on scale-space maxpool. To further analyze the
results in Fig. 7 of our main paper, we visualize maxpooled
positions of predicted matches on sample pairs of SPair-
71k [9], PF-PASCAL [4], and PF-WILLOW [3]. Figure S3
shows the results and describes how we visualize them. Due
to large scale-variations in pairs of SPair-71k, our model
collects winners of scale-space vote, i.e., CHM(·; k6D

psi),
from diverse positions in scale-space. In contrary, objects
in PF-PASCAL and PF-WILLOW exhibit relatively small
scale-variations, thus encouraging our model to collect win-
ners of the vote mostly from the original scales. We observe
that the maxpooled positions typically depend on scales of
object’s parts as seen in Fig. S3.
Learned CHM kernels. Figure S4 describes how we visu-
alized Fig. 3 of our main paper. For straightforward visual-
ization of high-dimensional geometry on 2D plane, we use
tesseracts and their arrangement on a 2D grid to represent
4D and 6D tensors respectively. Learned kernels of k6D-4D

psi

(ours), k6D-4D
full , and k6D-4D

iso are respectively visualized in Figs
S5, S6, and S7.

Interestingly, the weight patterns of kernels k6D-4D
psi and

k6D-4D
full are remarkably similar; the weights for matches with

large offsets and closer distance are learned to be higher
(darker) while those with small offsets and far distance are
learned to be lower (brighter). Moreover, learned weight
patterns of 4D maps in second, fourth, sixth, and eighth
rows of k6D

full in Fig. S6 are noticeably similar to each other.
We also observe that patterns in first and last rows, and pat-
terns in third and seventh rows of k6D

full are similar to each
other as well. In contrast, knD

iso is unable to express diverse
weight patterns due to its parameter-sharing constraint that
enforces full isotropy. This observation reveals that our
kernel knD

psi in CHMNet clearly benefits from its reasonable
parameter-sharing strategy, in terms of both efficiency and
accuracy as demonstrated in Tab. 2 of our main paper.

2. Additional implementation details
Coordinate normalization. Following the work of [6], we
use height and width normalized coordinates to ensure nu-
merical stability of loss gradients such that[

−1
−1

]
≤ Pij: ≤

[
1
1

]
, (1)

where P is a set of coordinates on a dense regular grid used
for flow formation. This normalization gives spatial bounds
[−1, 1] to the intermediate output coordinates P̂′, k, and k̂′.
Hyperparameters. During training, the learning rates of
CHM layers and backbone feature extractor are set to 1e-3
and 1e-5, respectively with batch size of 16. The distance
threshold τ in Eqn.11 is set to 0.1. We set the standard
deviation of Gaussian kernel G ∈ R30×30 to 17.
Implmentation of high-dimensional convolution. As Py-
Torch [11] supports only upto 3D convolution, we must
manually implement a (dense) high-dimensional convo-
lutions. We first demonstrate the original implementa-
tion of 4D convolution [12], and how we efficiently re-
implemented the same 4D convolution and improved it for
high-dimensional convolution. Given B correlation tensors
in a minibatch1 C ∈ RB×H×W×H′×W ′

and a 4D ker-
nel K ∈ Rk×k×k×k, we denote each 4D piece of C by
Ci := C:i::: ∈ RB×W×H′×W ′

and each 3D tensor in K
by Ki := Ki::: ∈ Rk×k×k. The work of [12] implements
4D convolution f4D by performing H times of following
operation:

f4D(C)i =f3D(Ci−p,K1) + f3D(Ci−p+1,K2) (2)
+ ...+ f3D(Ci+p,Kk) + b

where f3D is a function that performs 3D convolution on
C∗ across the batch given 3D kernel K∗, p is a padding
size2, and b is a bias term. As a result, f4D in Equation 2
performs kH times of 3D convolutions.

1We omit channel sizes of the tensor for brevity.
2We set p = bk/2c in our experiment.

http://cvlab.postech.ac.kr/research/CHM/

In this work, we implement a fast version of the 4D
convolution which performs significantly smaller number
of 3D convolutions compared to the original one. We
first reshape the correlation tensor of a minibatch as C ∈
RBH×W×H′×W ′

and make k copies of it. Using the 3D
kernels {Ki}ki=1, we apply 3D convolution f3D on each
copy and denote its output by Ĉi = f3D(C,Ki). We again
reshape the tensors {Ĉi}ki=1 to have size B × H × W ×
H ′ ×W ′ and perform the following:

f4D(C)i = Ĉ1
i−p + Ĉ2

i−p+1 + ...+ Ĉk
i+p + b. (3)

Note that the number of 3D convolution operations in our
implementation is H times smaller compared to that in the
original implementation [12] (k (ours) vs. kH [12]). Given
a 4D correlation tensor C ∈ R16×30×30×30×30, our im-
plementation takes about 0.7 ms while the implementation
of [12] takes about 150 ms on a machine with an Intel
i7-7820X CPU and an NVIDIA Titan-XP GPU. A high-
dimensional convolutions (≥ 5D) are implemented in a sim-
ilar manner; our implementation of 6D convolution with in-
put in R16×15×15×3×15×15×3 takes about 180 ms on the
same machine.

We also manually implement parameter-sharing kernels
knD
psi and knD

iso: Before applying convolution, we instantiate
high-dimensional kernel filled with zeros and assign param-
eters to their corresponding indices by addition.

3. Qualitative results
The proposed convolutional Hough matching allows a

flexible non-rigid matching and even multiple matching sur-
faces or objects. To demonstrate the ability of the CHM
in matching multiple objects, we visualize some qualitative
results of our method (CHMNet) on some toy images with
multiple instances in Fig. S1. Top 300 confident matches
predicted by our model (CHMNet) are mostly on common
instances in the input pairs of images. Replacing convolu-
tional Hough matching (learnable local voting layer) to reg-
ularized Hough matching [1, 8] (non-learnable global vot-
ing layer) severely damages the model predictions; the con-
fident matches become noisy and unreliable, mostly being
scattered on background. Without CHM layers, the model
fails to localize common instances in the images. Figure S8
also visualizes sample pairs of PF-PASCAL with top 300
confident matches predicted by each model. Our model
effectively discriminates between semantic parts and back-
ground clutters as seen in the second row of Fig. S8. The
absence of CHM layers severely harms the model predic-
tions as seen in the third and last rows of Fig. S8. These
results reveal that the proposed CHM layers effectively find
reliable matches between common instances across differ-
ent images while being robust to background clutter even in
presence of multiple instances.

In
p

u
t

p
ai

rs
C

H
M

N
et

(o
u

rs
)

w
/o

 C
H

M
C

H
M

 →
R

H
M

Figure S1: Multiple instance matching with top 300 confi-
dent matches.

Figure S2: Failure cases on SPair-71k [9] dataset in pres-
ence of extreme changes in view-point, large intra-class
variation, and deformation. We show the keypoints of
ground-truth correspondences in circles and the predicted
keypoints in crosses with a line that depicts matching error.

The qualitative comparisons to the recent semantic cor-
respondence approaches [5, 7, 8, 10, 12] are visualized in
Figs. S9, S10, and S11. We warp source images to target
images using predicted correspondences: Given source key-
points, each model predicts their corresponding positions
in target image by using its own keypoint transfer scheme,
e.g., nearest neighbor assignment [8, 10], hard-assignment
by taking mostly likely match [5, 7, 12] or soft argmax
(ours). Using the keypoint correspondences, we compute
thin plate spline (TPS) transformation parameters [2] and
apply the transformation to source image to align target
image. Figure S9 shows the results on PF-PASCAL. Fig-
ures S10 and S11 show the results on SPair-71k. Our model
effectively warp the source images to align the source ob-
jects to the target ones based on predicted correspondences
even in presence of large view-point, illumination, and scale
differences. Representative failure cases of our model are
shown in Fig. S2.

PF-PASCAL & PF-WILLOWSPair-71k

𝐂(2) ∈ ℝ𝐻×𝑊×𝑆×𝐻×𝑊×𝑆

A match (𝑖, 𝑗, 𝑘, 𝑙): where

(𝑖, 𝑗) : position nearest to source keypoint

&

(𝑘, 𝑙): position nearest to predicted keypoint

Scale-space maxpool:

𝐂𝑖𝑗𝑘𝑙
(3)

= max
𝑚,𝑛

𝐂𝑖𝑗𝑚𝑘𝑙𝑛
(2)

2
1

2
1

2

1

2

1

𝐂(3) ∈ ℝ𝐻×𝑊×𝐻×𝑊
Visualization of a match (𝑖, 𝑗, 𝑘, 𝑙) maxpooled from …

position (2, 1) : position (1,
1

2
) : position (

1

2
, 1) :

Figure S3: Visualization of maxpooled position in scale-space. In each image pair, we show source keypoints (given) and
their corresponding target keypoints (predicted) in circles in left and right images respectively. The size (large, medium,
and small) of each circle indicates maxpooled position in scale-space. If both circles of a match are large, its match score is
pooled from position (

√
2,
√
2) in scale space. If the size of one circle is medium and that of the other is small, its match score

is from position (1, 1/
√
2) and so on. We show ground-truth target keypoints in crosses with a line that depicts matching

error. Best viewed in electronic form.

Scale 1Scale 1/ 2

Weight of CHM kernel
for 𝑐 𝐩, 𝐩′ :

𝑘 (𝐩 − 𝐱, 𝐩′ − 𝐱′)
is visualized as

Scale (1/ 2, 1)

Offset length 2

Scale (2, 2)

Offset length 0

Scale (
12
,
12)

Scale (
2
,/

2
)

Scale (
12
,1
)

⋮

Visualization of all

weights of 𝑘full
6D

⋯

⋯

⋯

Offset length 0 Offset length 2Offset length 1 Offset length 4 2

⋮⋮ ⋮
𝐩 𝐩′

Scale 2 Scale 2

𝐩′

𝐩

Figure S4: Description of visualizing learned weights of high-dimensional kernels: (Left) The arrows represent the offset
vectors relative to the kernel position (x,x′), and the circles mean zero offset. (Right) For straightforward visualization, we
decompose a high-dimensional kernel into multiple 4D kernels (tesseracts) and visualize learned weights of each 4D kernel
as a set of maps consisting of offset vectors. Darker offsets mean larger weights while brighter ones mean smaller weights.

Offset length 0 Offset length 2Offset length 1 Offset length 4 2Offset length 2 Offset length 5 Offset length 2 2 Offset length 3 Offset length 10 Offset length 13 Offset length 3 2 Offset length 4 Offset length 17 Offset length 2 5 Offset length 5

𝑘psi
6𝐷 ∈ ℝ3×3×5×5×5×5

𝑘psi
4𝐷 ∈ ℝ5×5×5×5

Figure S5: Learned k6D-4D
psi used in CHMNet. The 6D kernel (k6D

psi) consists of four 4D kernels each of which has 55 parame-
ters.

Offset length 0 Offset length 2Offset length 1 Offset length 4 2Offset length 2 Offset length 5 Offset length 2 2 Offset length 3 Offset length 10 Offset length 13 Offset length 3 2 Offset length 4 Offset length 17 Offset length 2 5 Offset length 5

𝑘full
6𝐷 ∈ ℝ3×3×5×5×5×5

𝑘full
4𝐷 ∈ ℝ5×5×5×5

Figure S6: Learned k6D-4D
full . The 6D kernel (k6D

full) consists of nine 4D kernels each of which has 625 parameters.

Offset length 0 Offset length 2Offset length 1 Offset length 4 2Offset length 2 Offset length 5 Offset length 2 2 Offset length 3 Offset length 10 Offset length 13 Offset length 3 2 Offset length 4 Offset length 17 Offset length 2 5 Offset length 5

𝑘iso
6𝐷 ∈ ℝ3×3×5×5×5×5

𝑘iso
4𝐷 ∈ ℝ5×5×5×5

Figure S7: Learned k6D-4D
iso . The 6D kernel (k6D

iso) consists of three 4D kernels each of which has 15 parameters.

In
p

u
t

p
ai

r
C

H
M

N
et

(o
u

rs
)

C
H

M
 →

R
H

M
w

/o
 C

H
M

Figure S8: Sample pairs with top 300 confident matches. TP and FP matches are colored in blue and red respectively.

(a) Source image (b) Target image (c) CHMNet (ours) (f) HPF (g) DCCNet (h) NCNet(d) DHPF (e) ANC-Net

Figure S9: Example results on PF-PASCAL [4]: (a) source image, (b) target image (c) CHMNet (ours), (d) DHPF [10], (e)
ANC-Net [7], (f) HPF [8], (g) DCCNet [5], and (h) NCNet [12].

(a) Source image (b) Target image (c) CHMNet (ours) (f) HPF (g) DCCNet (h) NCNet(e) ANC-Net(d) DHPF

Figure S10: Example results with large view-point differences from SPair-71k [9]: (a) source image, (b) target image (c)
CHMNet (ours), (d) DHPF [10], (e) ANC-Net [7], (f) HPF [8], (g) DCCNet [5], and (h) NCNet [12].

(a) Source image (b) Target image (c) CHMNet (ours) (f) HPF (g) DCCNet (h) NCNet(d) DHPF (e) ANC-Net

Figure S11: Example results with large illumination and scale differences, and truncation from SPair-71k [9]: (a) source im-
age, (b) target image (c) CHMNet (ours), (d) DHPF [10], (e) ANC-Net [7], (f) HPF [8], (g) DCCNet [5], and (h) NCNet [12].

References
[1] Minsu Cho, Suha Kwak, Cordelia Schmid, and Jean Ponce.

Unsupervised object discovery and localization in the wild:
Part-based matching with bottom-up region proposals. In
Proc. IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2015.

[2] Gianluca Donato and Serge Belongie. Approximate thin
plate spline mappings. In Proc. European Conference on
Computer Vision (ECCV), 2002.

[3] Bumsub Ham, Minsu Cho, Cordelia Schmid, and Jean
Ponce. Proposal flow. In Proc. IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2016.

[4] Bumsub Ham, Minsu Cho, Cordelia Schmid, and Jean
Ponce. Proposal flow: Semantic correspondences from ob-
ject proposals. IEEE Transactions on Pattern Analysis and
Machine Intelligence (TPAMI), 2018.

[5] Shuaiyi Huang, Qiuyue Wang, Songyang Zhang, Shipeng
Yan, and Xuming He. Dynamic context correspondence net-
work for semantic alignment. In Proc. IEEE International
Conference on Computer Vision (ICCV), 2019.

[6] Junghyup Lee, Dohyung Kim, Jean Ponce, and Bumsub
Ham. Sfnet: Learning object-aware semantic correspon-
dence. In Proc. IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2019.

[7] Shuda Li, Kai Han, Theo W. Costain, Henry Howard-
Jenkins, and Victor Prisacariu. Correspondence networks
with adaptive neighbourhood consensus. In Proc. IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), 2020.

[8] Juhong Min, Jongmin Lee, Jean Ponce, and Minsu Cho.
Hyperpixel flow: Semantic correspondence with multi-layer
neural features. In Proc. IEEE International Conference on
Computer Vision (ICCV), 2019.

[9] Juhong Min, Jongmin Lee, Jean Ponce, and Minsu Cho.
SPair-71k: A large-scale benchmark for semantic correspon-
dence. arXiv prepreint arXiv:1908.10543, 2019.

[10] Juhong Min, Jongmin Lee, Jean Ponce, and Minsu Cho.
Learning to compose hypercolumns for visual correspon-
dence. In Proc. European Conference on Computer Vision
(ECCV), 2020.

[11] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zem-
ing Lin, Natalia Gimelshein, Luca Antiga, Alban Desmai-
son, Andreas Kopf, Edward Yang, Zachary DeVito, Mar-
tin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit
Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Py-
torch: An imperative style, high-performance deep learning
library. In Advances in Neural Information Processing Sys-
tems (NeurIPS). 2019.

[12] Ignacio Rocco, Mircea Cimpoi, Relja Arandjelović, Akihiko
Torii, Tomas Pajdla, and Josef Sivic. Neighbourhood consen-
sus networks. In Advances in Neural Information Processing
Systems (NeurIPS), 2018.

