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Abstract

In this supplementary material for Generalized Domain
Adaptation (main paper), we provide details of the network
architectures used in our experiments and present additional
experimental results.

A. Network Architectures
This section provides the details of the network architec-

tures used in our experiments (Sec. 5 in the main paper).
We consistently use the same network architecture detailed
in Table 1 for our domain label estimation throughout all
the experiments in the main paper. The architecture of our
classifier network for Digits is shown in Table 2.

B. Additional Results for Office-Home
We report additional results for Office-Home in the MS-

OSDA and BTDA problems. We follow the protocols used
in [12, 1], as we did in the experiments (Sec. 5.2) described
in the main paper. For MS-OSDA, we consider all four
possible combinations of three source domains and one target
domain with 45 shared and 20 open set classes. For BTDA,
we consider all four possible combinations of one source
domain and three target domains.

Results for MS-OSDA. Table 3 shows the results.
Our method is the second best and outperforms MOS-
DANET [12], the state-of-the-art MS-OSDA method, in
one condition.

Results for BTDA. Table 4 shows the results. Our method
is competitive with AMEAN [1] and consistently better than
the other methods.

C. Comparison with OCDA
Liu et al. [6] recently proposed a new UDA variant called

open compound domain adaptation (OCDA). The OCDA
problem deals with adaptation to “open domains,” i.e., do-
mains not present in the training data, and they proposed

Table 1: Network architecture for domain label estima-
tion.
32× 32× 1 (Digits) or 32× 32× 3 (Office-31/Office-Home) Input

3× 3 conv. 16 channels, ReLU, BatchNorm
3× 3 conv. 32 channels, ReLU, BatchNorm

2× 2 Max Pooling
3× 3 conv. 64 channels, ReLU, BatchNorm
3× 3 conv. 64 channels, ReLU, BatchNorm

2× 2 Max Pooling
Average Pooling

Fully Connected Layer 64, ReLU, BatchNorm
Fully Connected Layer 64

Table 2: Network architecture of class classifier for Dig-
its.

Feature Extractor (Gf )
32× 32× 3 Input

InstanceNorm
5× 5 conv. 64 channels, LeakyReLU, SwitchNorm [10]
5× 5 conv. 64 channels, LeakyReLU, SwitchNorm [10]

3× 3 conv. 128 channels, stride 2, LeakyReLU, SwitchNorm [10]
3× 3 conv. 128 channels, stride 2, LeakyReLU, SwitchNorm [10]

Dropout
Class Label Predictor (Fy) Domain Classifier (Fd)

Gradient Reversal Layer
Fully Connected Layer 100, Fully Connected Layer 100,

ReLU, SwitchNorm [10] ReLU, SwitchNorm [10]
Dropout

Fully Connected Layer 100, Fully Connected Layer 100,
ReLU, SwitchNorm [10] ReLU, SwitchNorm [10]

Dropout
Fully Connected Layer #class Fully Connected Layer #domain

Softmax Softmax

a solution for the problem. Although the OCDA problem
is not within the scope of our GDA, evaluating the perfor-
mance of the OCDA method on our GDA problem and the
performance of our GDA method on the OCDA problem
would be interesting.

Evaluation of OCDA Method in GDA Problem. We first
show the performance of the OCDA method [6] in our GDA1
problem. The protocol is exactly the same as the one men-
tioned in the main paper. Note that we use only the OS*
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Table 3: Results for Office-Home in MS-OSDA. OS val-
ues are listed in the table. The best and second-best are
highlighted in bold and underlined, respectively.

Ar, Cl, Pr Ar, Pr, Rw Pr, Cl, Rw Ar, Cl, Rr Avg.→ Rw → Cl → Ar → Pr
OSVM [14] 60.2 46.3 48.6 57.0 53.0
OSVM+DANN [3] 54.5 31.6 40.9 53.8 45.2
OSBP [13] 53.6 38.0 46.9 54.9 48.3
IOSBP [2] 64.5 46.2 54.9 66.4 58.1
MOSDANET [12] 80.3 67.5 60.6 80.0 72.1
Ours 78.6 59.1 64.8 75.5 69.5

Table 4: Results for Office-Home in BTDA. Classification
accuracy is shown in the table. The best and second-best are
highlighted in bold and underlined, respectively.

Ar → Cl → Pr → Rw → Avg.Cl, Pr, Rw Ar, Pr, Rw Ar, Cl, Rw Ar, Cl, Pr
Labeled only 47.6 42.6 44.2 51.3 46.4
DAN [7] 55.6 56.6 48.5 56.7 54.4
RTN [8] 53.9 56.7 47.3 51.6 52.4
JAN [9] 58.3 60.5 52.2 57.5 57.1
RevGrad [3] 58.4 58.1 52.9 62.1 57.9
AMEAN [1] 64.3 65.5 59.5 66.7 64.0
Ours 63.3 63.6 58.6 64.8 62.6

metric because the OCDA method has no mechanism to de-
tect unknown classes. Table 5 shows the results. Compared
with the best baseline in GDA1, OSBP, the OCDA method
won some and lost some. Ours is clearly better than the
OCDA method in all the setups, which stresses the merit of
our method.

Evaluation of GDA method in OCDA Problem. We next
report the performance of our method in the OCDA problem.
In the experiment, we use SVHN [11] as a source domain,
MNIST [5], MNIST-M [3], and USPS [4] as compound
domains, which consist of multiple target domains without
their domain labels, and SynDigits [3] as an open domain.
We compare our method with the OCDA method [6] and
AMEAN [1]. The results are shown in Table 6. Note that
the symbol ‡ means that open domain images are treated as
being included in compound domains during training. While
Ours is highly competitive with AMEAN, the best baseline
used in [6], it cannot outperform the OCDA method [6].
Extending our method to a form applicable to the OCDA
problem would be an interesting future direction.

D. Additional Analysis
Ablation of Regularization Term Lp [15]. The regulariza-
tion term Lp [15] requires the true class distribution of the
data in advance, which cannot be known in practice. We
evaluated our method without Lp to ascertain the perfor-
mance when the distribution is unknown. The HOS values
on Office-31 were 81.02 with Lp vs. 80.34 without Lp. The
gap was only 0.7%, which proves the strong robustness of
our method.

Performance to Different Difficulty Levels. The difficulty
of the GDA task varies depending on the number of classes

Table 5: OCDA results for Digits in GDA1. OS* values
are listed in the table. The best are highlighted in bold.

Setup sv(0-3), sv(0-3), sv(0-2), sy(3-5),
sy(4-7) mt(4-7) mt(6-8)

OSBP [13] 64.33 7.37 33.95
OCDA [6] 34.35 0.83 38.49
Ours 86.18 70.50 79.76

Setup sv(0,1), sy(2,3), sv(0-5), sv(0-5),
mt(4,5), mm(6,7) mt(2-7) mt(2-7)

OSBP [13] 19.48 33.15 10.93
OCDA [6] 17.08 57.22 4.58
Ours 66.02 85.83 73.46

Table 6: Results for OCDA problem. Classification accu-
racy is reported in the table. The best are highlighted in
bold.

Source Compound Domains Open
SVHN MNIST MNIST-M USPS SynDigits Avg.
AMEAN‡ [1] 85.2 65.7 74.3 84.4 77.4
OCDA [6] 90.9 65.7 83.4 88.2 82.1
Ours‡ 81.7 57.9 77.4 92.3 77.3
Ours 81.3 59.5 76.3 87.6 76.2
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Figure 1: Performance of GDA with various difficulty
levels.

to be classified and the percentage of labeled data. We evalu-
ate the performance of the proposed method under various
difficulty levels of GDA. Fig. 1a shows the accuracy for dif-
ferent numbers of labeled classes on Office-31 in GDA1. As
with general multiclass classification, the accuracy decreases
as the number increases. Fig. 1b shows the accuracy for
different ratios of labeled samples on Office-31 in GDA2.
As the ratio decreases, the accuracy decreases.
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