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In this file, we present some details that were left out
from the main text in favor of the space limit. This material
is divided into two sections: Section A, containing the proof
of Theorem 1, and Section B, detailing the experiments.

A. Theorem Proofs
For the proof of Theorem 1 three lemmas need to be

stated. Lemma 1, which bounds the difference of the error
functional on target and source between any two hypoth-
esis h, h′ using the Wasserstein distance, Lemma 2, which
presents the uniform convergence bound for the Wasserstein
distance, and Lemma 3, which presents the concentration
inequality for the error functional. The proof of these lem-
mas is omitted, but can found in the papers of their respctive
authors.

Lemma 1. (Due to [4]) Let µs, µt ∈ P(X ) be two prob-
ability measures on X ⊂ Rd. Assume that the cost func-
tion c(x,y) = ||φ(x) − φ(y)||Hk`

, where Hk` is a Repro-
ducing Kernel Hilbert Space (RKHS) with associated ker-
nel k` : X × X → R induced by φ : X → Hk` and
k`(x,y) = 〈φ(x), φ(y)〉Hk`

. Assume further that the loss
function `h,f : x → `(h(x), f(x)) is convex, symmetric,
bounded, obeys the triangle inequality and has the para-
metric form |h(x) − f(x)|q for some q > 0. Assume
also that k` is square-root integrable w.r.t. both µs and
µt, for all µs, µt ∈ Pp(X ), where X is separable and
0 ≤ k`(x,y) ≤ K, ∀x,y ∈ X . Then, the following holds,

εt(h, h
′) ≤ εs(h, h′) +W1(µs, µt),

for every hypothesis h, h′ ∈ Hk` .

Lemma 2. (Due to [2]) Let µ be a probability measure in
Rd, so that for some α > 0 we have that

∫
Rd e

α||x||2dµ <

∞ and µ̂ =
1

n

∑n
i=1 δxi be its associated empirical mea-

sure defined on a sample of independent variables {xi}ni=1

drawn from µ. Then, for any d′ > d and ξ′ <
√
2

there exists a constant n0 depending on d′ and some square
exponential moment of µ such that for any ε > 0 and
n ≥ n0max(ε−(d

′+2), 1),

P[W1(µ̂, µ) > ε] ≤ exp
(
− ξ′

2
nε2
)
,

where d′ and ξ′ can be calculated explicitly.

The consequence of Lemma 2 is that we may express ε
in terms of δ,

ε =

√
2

nξ′
log( 1δ ) (1)

Lemma 3. (Due to [4]) Under the assumptions of
Lemma 1, let D be a sample of size n, where for each
j ∈ {1, · · · , N}, βjn points are drawn from µsj and la-
belled according to fj . Then, for any fixed α, with proba-
bility 1− δ for all h the following holds,

P
[
|ε̂α(h)− εα(h)| > ε+ θ

]
≤ 2exp
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−ε2n

2K
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α2
j

βj

)
.

(2)

where θ = 2
√
K/n

∑N
j=1

αj

βjn
√
βj

The consequence of Lemma 3 is that we may express ε
in Equation 2 as,

ε =

√√√√2K
∑N
j=1

α2
j

βj
log( 2δ )

n
. (3)

Theorem 1. (Due to [4]) Let Xsj , j ∈ {1, · · · , N} and
Xt be N + 1 samples of size nsj and nt drawn i.i.d. from



µsj and µt respectively. Let µ̂sj and µ̂st be the respective
empirical measures. If ĥα is the empirical minimizer of ε̂α
and h∗t = minimize

h∈H
εt(h), then for any fixed α and δ ∈

(0, 1), with probability at least 1 − δ (over the choice of
samples),

εt(ĥα) ≤ εt(h∗T ) + c1

+ 2

N∑
j=1

αj(W1(µ̂sj , µ̂t) + λj + c2),
(4)

where,

c1 = 2
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α2
j
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+ 2
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,

c2 =

√
2 log(1δ )

ξ′
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1

nsj
+

√
1

nt

)
,

λj = minimize
h∈H

εsj (h) + εt(h).

Proof. As suggested by [4], the proof steps are similar to
those of Theorem 4 of [1],

|εα(h)− εt(h)| =
∣∣∣∣ N∑
j=1

αjεsj (h)− εt(h)
∣∣∣∣,

≤
N∑
j=1

αj |εsj (h)− εt(h)|. (5)

Now, let h∗j = argminh∈Hεsj (h)+ εt(h). Notice that we
may rewrite the difference |εsj (h)− εt(h)| as,

|εsj (h)− εt(h)| = |εsj (h)− εsj (h, h∗j )
+ εsj (h, h

∗
j )− εt(h, h∗j )

+ εt(h, h
∗
j )− εt(h)|,

then, using the triangle inequality, it follows that,

|εsj (h)− εt(h)| ≤|εsj (h)− εsj (h, h∗j )|+
|εsj (h, h∗j )− εt(h, h∗j )|+
|εt(h, h∗j )− εt(h)|.

In this last equality, we may use again the triangle in-
equality to get the following bounds,

|εsj (h)− εsj (h, h∗j )| = |εsj (h, fsj )− εsj (h, h∗j )|,
≤ |εsj (h∗j )| = εsj (h

∗
j ),

the same reasoning can be applied to the difference
|εt(h, hj) − εt(h)|. Plugging back these results into Equa-
tion 5,

|εα(h)− εt(h)| ≤
N∑
j=1

αj(εsj (h
∗
j ) + εt(h

∗
j )

+ |εj(h, h∗j )− εt(h, h∗j )|).

In this last equation, one may notice that λj = εsj (h
∗
j )+

εt(h
∗
j ). Moreover, using Lemma 1 one has |εsj (h, h∗j ) −

εt(h, h
∗
j )| ≤W1(µsj , µt), resulting in,

|εα(h)− εt(h)| ≤
N∑
j=1

αj(λj +W1(µsj , µt)),

εt(h) ≤ εα(h) +
N∑
j=1

αj(λj +W1(µsj , µt)). (6)

The bound we want to prove is achieved by bounding
different terms in this equation for h = ĥ. First, we begin
by noticing that by using the triangle inequality multiple
times, one has,

W1(µsj , µt) ≤W1(µsj , µ̂sj ) +W1(µ̂sj , µ̂t) +W1(µt, µ̂t),

now, we may bound each term W1(µ, µ̂) Lemma 2, espe-
cially through Equation 1,

W1(µsj , µ̂sj ) ≤

√
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√
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W1(µt, µ̂t) ≤

√
2 log( 1δ )
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which ultimately leads to,

W1(µsj , µt) ≤W1(µ̂sj , µ̂t)+√
2 log(1δ )

ξ′

(√
1

nsj
+

√
1

nt

)
.

(7)

The second term on the right-hand-side of Equation 7 is
exactly c2, for which we get by bounding the Wasserstein



distance in Equation 6. Now, following the proof presented
for Theorem 4 of [1], we perform four changes on the term
εα(ĥα), as follows,

εα(ĥα)
(1)→ ε̂α(ĥα)

(2)→ ε̂α(h
∗
t )

(3)→ εα(h
∗
t )

(4)→ εt(h
∗
t )

We justify each one of these steps bellow,

(1) This step is justified by Lemma 3, for which we have,

εα(ĥα) ≤ ε̂α(ĥα) +

√√√√2K
∑N
j=1

α2
j
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log( 2δ )
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+ 2

√
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√
βj
.

(2) This step is justified as ĥα is the minimizer of ε̂α, so,

ε̂α(ĥα) ≤ ε̂α(h∗t )

(3) This step is justified by applying again Lemma 3,

ε̂α(h
∗
t ) ≤ εα(h∗t ) +

√√√√2K
∑N
j=1

α2
j

βj
log( 2δ )

n

+ 2

√
K

n

N∑
j=1

αj

βjn
√
βj
.

(4) This step is justified by applying Equation 6 again, for
h = h∗t . Here we present it with W1(µsj , µt) already
substituted byW1(µ̂sj , µ̂t), as we already justified this
step.

εα(h
∗
t ) ≤ εt(h∗t ) +

N∑
j=1

αj(λj +W1(µ̂sj , µ̂t) + c2)

Starting from Equation 6, and following each of the
above mentioned steps proves the theorem.

B. Experiments and Discussion
In this section we detail the experimental setup for

the Wassertein Barycenter Transport (WBT) algorithm. To
decide on the set of hyper-parameters, a 5-fold cross-
validation procedure was used. Especially, WBT involves

four hyper-parameters: (1) the barycenter regularization
penalty εb, (2) the transport (barycenter to target) regular-
ization parameter ε, (3) the class-based regularizer penalty
η, and (4) the maximum number of iterations for the
barycenter’s convergence. Below we specify the range for
each parameter,

• εb ∈ {10−2, 10−3},

• ε ∈ {10−2, 10−3},

• η ∈ {10−2, 10−3, 0},

• Nmax ∈ {1, 5, 10, 100}.

Furthermore, we used as stopping criteria for the WBT
algorithm the squared norm of the barycenter displacement.
More specifically, let X(k−1)

b be the barycenter’s support
at iteration k − 1, and X

(k)
b its support at the the present

iteration. The WBT algorithm stops if,

||X(k)
b −X

(k−1)
b ||22 ≤ δ,

or if k attains Nmax. In our experiments we considered
δ = 1, as it is a very low value compared to the norm in the
last equation, since the number of variables is high.

Before commenting on the importance of each parame-
ter, we remark that for practical purposes of numerical accu-
racy, we normalize the cost matrix by its maximum value,
that is, we use C̃ = C/maxi,j Cij . Such normalization
was used for instance in [3], and justifies using such small
values for the penalties.

Moreover, the barycenter penalty εb is the most critic pa-
rameter, as it determines the quality of the intermediate built
domain. Especially, if it is too high the intermediate domain
is collapsed on the average of the various domains, while
if its too low, the Sinkhorn algorithm suffers from numer-
ical accuracy issues. In general, we found that for Music-
Speech Discrimination (MSD), Music Genre Recognition
(MGR), and Face Recognition, εb = 10−3 is the best value,
while for Object Recognition εb = 10−2 is the better choice
(εb = 10−3 for this latter task yields unstable results).

Additionally, we found out that usually a few iterations
are sufficient for building a good intermediate domain, as
the best results for the Caltech-Office dataset were achieved
for Nmax = 1. Surprisingly, this does not hold for the
DSLR domain. This suggest that an improvement may be
made in the stopping criteria of WBT. Table 1 shows a sum-
mary of the best found hyper-parameters.
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