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1. Introduction
In this supplementary material, we provide:

e Qualification details of methods for the joint segmen-
tation and labeling task.

e ASSIGN’s training loss implementation details.

e Details about the BiRNN baselines employed in the
experiments.

e Frame-level micro and macro F; scores of ASSIGN
and related methods on the CAD-120 and Bimanual
Actions datasets.

e Additional qualitative segmentation and labeling com-
parisons between ASSIGN and related methods.

e Source code of ASSIGN.

2. Qualification for joint segmentation and label
recognition task

As mentioned in the main manuscript, [5} 6] implicitly
or explicitly used information relevant to the ground-truth
segmentation during the training or testing of their models.

For the Stochastic Grammar method [5]], the model re-
quires the computation of data statistics such as length of
sub-activities and object affordances, and these were com-
puted from the whole dataset. The experimental proto-
col is a leave-one-subject out cross-validation, which re-
quires such data-dependent statistics to be computed from
the training folds during each round of cross-validation.
The code relies on these pre-computed statistics to execute,
and in the files provided by the authors in a Github issue]}
we can verify that the lengths of sub-activities and object
affordances provided are in relation to the full dataset.

For the Generalized Earley Parser method [6], the au-
thors implicitly give segmentation information about the
data to their model by repeating the segment-level features

Uhttps://github.com/SiyuanQi/grammar-activity-prediction/issues/2

Table 1. F1 @k results for ASSIGN with and without anticipation
loss on the CAD-120 dataset.

Model

Sub-activity Object Affordance

F1@0.10 F;@0.50 F,@0.10 F,@0.50
ASSIGN w/o anticipation loss 86.2 71.4 91.3 80.4
ASSIGN 88.0 73.8 92.0 824

provided by Koppula et al. [2] as frame-level features. We
can confirm that by analyzing the function collatefn,ca
where the length information about the segments is used
in lines 40-44 to assemble the frame-level features. This
means that the segmentation is implicitly input to their
model, which makes their method not suitable for this task.

3. Training loss implementation details

In addition to the segmentation and recognition losses,
ASSIGN has an anticipation loss. This anticipation loss is
identical to the recognition loss, but predicts the label of
the next segment. All ASSIGN variations were trained with
this anticipation loss. We show in Table[I| the F'; @k scores
on the CAD-120 dataset for ASSIGN with and without the
anticipation loss. Similarly to previous works [4} 8], doing
anticipation helps with the recognition results.

4. BiRNN baselines

We designed two baseline models for our experiments:
the Independent BiRNN and the Relational BIRNN. These
baselines can be seen as single-layer dense versions of AS-
SIGN with restricted interaction between the entities.

The Independent BiRNN is simply a BiRNN per entity
(with shared parameters for entities of the same class) fol-
lowed by an MLP to recognize the sub-activity (or affor-
dance) of the entity. We call it independent because there is
no message passing between the entities. More specifically,
for the e-th entity at the ¢-th frame we compute its BIRNN

Zhttps://github.com/SiyuanQi/generalized-earley-
parser/blob/master/src/python/datasets/utils.py



Table 2. Joint segmentation and label recognition task with no pre-
segmentation. Micro and macro F; performance on the CAD-
120 dataset. An “*” mark methods with a different experimental
protocol (see Section[2).

Sub-activity Fy (%) Object Affordance Fy (%)

Model Micro Macro Micro Macro
Independent BIRNN 58.0 54.2 83.3 73.3
rCRF 68.1 61.3 81.5 77.8
KGS 68.2 66.4 83.9 69.6
Relational BIRNN 70.3 67.7 81.6 66.4
ATCREF [3] 70.3 70.2 85.4 71.9
Stochastic Grammar* [5] 76.5 76.1 82.4 69.3
Gen. Earley Parser* [6] 79.4 79.7 - -
ASSIGN 74.8 73.3 86.9 79.6
state as
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where ¢ is the frame-level feature for the e-th entity at the
—, =

t-th frame, and hf = { ¢ h f} is the concatenation of

the forward and backward hidden states produced by the

BiRNN. We recognize the label associated with the t-th
frame as

g = Softmax (e (hf)) , 2)

where « is an MLP and label recognition is done frame-
wise.

The Relational BiRNN is similar to the Independent
BiRNN, but it includes infer-class messages between the
entities. The messages exchanged in the Relational BiRNN
are a mean-pooling of the hidden states of the entities of the
sender class. We compute the model BiRNN state as

: e %C FC
¢ = BIRNN (xta t—1s t+1) . 3)

The message to entity e is an infer-class message only, and
we compute it as the average of the hidden states of the
entities of class c*

inter—e 1
Mt = o geh,’f, (4)

where K is the number of entities for which c¢* # ¢¢. Fi-
nally, we recognize the label associated with the ¢-th frame
as

g5 = Softmax (o ([h§, m{™*"7¢])), 4)

where « is an MLP. Since the Bimanual Actions dataset
is not annotated with object affordances, we do not include
the human — object message in its Relational BiRNN.

5. Frame-level micro and macro F; results

We report in the main manuscript the F; @k metric for
the joint segmentation and label recognition task. To pro-
vide a complete analysis of ASSIGN and related meth-
ods, we include here the micro and macro F; results on

Table 3. Joint segmentation and label recognition task with no pre-
segmentation. Micro and macro F'; performance on the Bimanual
Actions dataset.

Model Sub-activity F; (%)

Micro Macro
Dreher et al. [T] 64.0 63.0
Independent BiRNN 76.7 74.8
Relational BIRNN 80.3 71.5
ASSIGN 82.3 79.5
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Figure 1. Segmentation and labeling results of ASSIGN and
ATCRF on the CAD-120 dataset for a making cereal activity.
In this example, ATCRF under-segments the human and the box
by skipping a few segments and merging adjacent labels. Sub-

activities: [l moving,  placing, || reaching, and ] pouring. Af-
fordances: . movable, . placeable, ~ stationary, | pour-to,
reachable, and | pourable.
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Figure 2. Segmentation and labeling results of ASSIGN and
ATCREF on the CAD-120 dataset for a taking food activity. In this
example, ATCRF over-segments the moving (|'1) sub-activity and
ignores the last reaching (). ASSIGN correctly segments and la-
bel the entities. Sub-activities: = null, ] reaching, [ opening,
moving,  placing, and  closing. Affordances:  stationary,
reachable, . openable, || containable,  closeable, l movable,
and [J] placeable.

both CAD-120 (Table 2) and Bimanual Actions (Table [3)
datasets.

For both datasets, ASSIGN attains superior performance
when compared to related methods and baselines. It is inter-
esting to note that the Relational BiRNN has lower macro
F; scores than ATCREF, even though it has higher F;Qk
scores. This relates to the discussion in the main manuscript
that frame-level micro/macro scores are not the most ap-
propriate metric when dealing with joint segmentation and
recognition problems. For example, in a situation where a
method over-segments a long segment, this might not reflect
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Figure 3. Segmentation and labeling results on the Bimanual Actions dataset for a sawing task. The main difficulty related methods have
is to handle long actions, such as the left hand hold (). Legend: ||| idle, | approach, | hold,  retreat, ||} place, | lift, and | saw.
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Figure 4. Segmentation and labeling results on the Bimanual Actions dataset for a pouring task. In this example, the Relational BiIRNN
has results comparable to ASSIGN but still makes several over-segmentation mistakes in both hands, such as the right hand pour ().
Legend:|J] idle, | approach, | hold, | lift, [1] drinking, || place,  retreat, and [[] pour.

badly on the frame-level metrics but it will reflect badly on
the F; @k metric since the model effectively splits the long
segment into many short segments.

As discussed in Section [2} the Stochastic Grammar [3]]
and Generalized Earley Parser [6] methods do not fully
qualify for the joint segmentation and label recognition
task, but for completeness we include their results in Ta-
ble 2| and discuss their merits. As we can see, both meth-
ods attain high results due to their ability to regulate and
generalize with the use of explicit grammar rules imposed
on their generative models. ASSIGN, on the other hand,
uses the activity structure as inductive biases to guide a dis-
criminative data-driven learning. Although less regulated
than the grammar-based methods, ASSIGN’s approach is
less sensitive to noise and more scalable with the size of the
problem. In terms of segmentation functionality, ASSIGN
does segmentation as a probabilistic prediction based on the
observe data and in tandem with the labeling task. Such a
statistic-based prediction is harder to control than a rule-
guided generator and may make mistakes on patterns less
observed in the training data. ASSIGN and grammar-based
methods are complimentary and can also be combined for
further expressiveness.

6. Segmentation and labeling extra qualitative
comparisons

We further illustrate the segmentation and labeling re-
sults of ASSIGN by showing some more qualitative com-
parisons between ASSIGN and related methods.

For the CAD-120 dataset, we show a making cereal and
a taking food activities in Figures[T|and 2] respectively. For

making cereal, we observe that ATCRF under-segments the
entities, which can happen to their model whenever their
ensembling strategy agrees on a wrong label. For the tak-
ing food activity we observe a mixed behavior: ATCRF
over-segments halfway through the video, the moving ()
sub-activity, and under-segments later the closing () sub-
activity. For both scenarios and entities in them, ASSIGN
correctly segments and label the segments.

For the Bimanual Actions dataset, we show a sawing
and a pouring activities in Figures [3] and [4] respectively.
For both activities, we observe that the biggest hurdle for
Dreher ef al. [1]] and the Relational BiRNN is sustaining
the prediction for long actions, which leads them to over-
segmentation issues. For example, the long hold (' ) and
the long saw (), in Figure (3| are heavily over-segmented
by them. ASSIGN, on the other hand, has no issues with
that.

7. Source code
Source code, data, and pre-trained models are avail-
abldf]
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