
Supplementary Material
Robust Audio-Visual Instance Discrimination

1. Parametric studies

We provide a parametric study of key Robust-xID
hyper-parameters.

Weight function shape parameter δ One critical
parameter of Weighted-xID is the shape parameter δ,
which specifies the mid-point location of the weight
function. For example, when δ = −2, the midpoint is
located at µ− 2σ where µ and σ are the sample mean
and standard deviation of the scores v̄T

i āi. This means
that for δ = −2, the majority of samples will have a
weight of 1, and only a small fraction will have a weight
close to wmin. As δ increases, the proportion of samples
that are down-weighted also increases. To study the
impact of δ, we trained several models using Weighted-
xID with different values of δ and for different amounts
of injected faulty positives n0. Other hyper-parameters
were kept at their default values wmin = 0.25 and κ =
0.5. The transfer performance is shown in Figure 1. As
can be seen, the proposed robust xID procedure is not
very sensitive to this hyper-parameter. This suggests
that Robust-xID can help representation learning as
long as clear faulty positives are suppressed.

Soft-xID: Mixing coefficient The mixing coeffi-
cient λ specifies the degree to which the one-hot targets
of instance discrimination are softened in Soft-xID. The
one-hot instance discrimination targets are used when
λ = 0. As λ increases, the softening scores S(j|i) are
increasingly used to adjust the one-hot targets. To
study the impact of the mixing coefficient λ, we trained
several models using Soft-xID with various values of
λ. Cycle consistent targets were used as the softening
strategy. Figure 2 shows the transfer performance of
the learned models on UCF and HMDB under the fine-
tuning and retrieval protocols. The trend is consistent
across the two datasets and two evaluation protocols.
Softening the instance discrimination targets enhances
representation learning, with the optimal performance
achieved with a mixing coefficient between 0.25 and
0.5. However, as the mixing coefficient increases sub-

stantially λ > 0.65, the targets are derived from the
model prediction alone and disregard instance labels.
In this case of large λ, the pre-training fails completely,
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Figure 1: Effect of shape parameter δ in Weighted-xID.
Transfer learning performance is evaluated on two datasets (UCF
and HMDB) under two protocols (full finetuning and retrieval).
For the fine-tuning protocol, we report final accuracy of video
level predictions. For the retrieval protocol, we report R@5.
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Figure 2: Effect of mixing coefficient λ in Soft-xID.
Transfer learning performance is evaluated on two datasets (UCF
and HMDB) under two protocols (full finetuning and retrieval).
For the fine-tuning protocol, we report final accuracy of video
level predictions. For the retrieval protocol, we report R@5.
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Figure 3: Best and worse Kinetics classes. For each class, we depict the top-1 retrieval performance (R@1) averaged across all
images of each class. The plot above shows the top 40 classes and the plot below the bottom 40 classes.

i.e., the learned representations have very low transfer
performance.

2. Additional analysis

The proposed approach learns high-quality feature
representations that can be used to discriminate several
action classes. This was shown in the main paper by
reporting transfer learning results. We now provide
additional qualitative evidence and analysis.

Retrieval For each video, we extracted 4 × 4 × 512
feature maps from the video encoder learned using
Robust-xID on the full Kinetics dataset. Figure 4 de-
picts the top 4 closest videos for several query sam-
ples. As can be seen, Robust-xID produces highly se-
mantic features, enabling correct retrievals for a large
number of videos spanning a large number of classes.
Furthermore, even when a video of a different class
is retrieved, the errors are intuitive (for example, the
confusion between ‘American football‘ and ‘Hurling‘ in
the third row). Failure cases also seem to be correlated
with classes that are hard to distinguish from the audio
alone (eg, different types of kicking sports or swimming
strokes).

Class-based analysis To better understand which
classes are better modeled by the Robust-xID frame-
work, we measured the top-1 retrieval performance
(R@1) averaged across all images of each class. Sim-
ilar to the analysis above, each video is represented
by a 4 × 4 × 512 feature map extracted from a video
encoder learned using Robust-xID on the full Kinet-
ics dataset. Figure 3 depicts a list of Kinetics classes
sorted by their average R@1 score. As can be seen, ac-
tion classes which are often accompanied by long and
distinctive sounds (e.g ., squash, harp, drums, accor-
dion, or scuba diving) tend to be more easily distin-
guished from others. In contrast, classes with less dis-
tinctive audio (e.g ., making a cake, eating cake, or hug-
ging) or classes where distinctive sounds are short-lived
(e.g ., blowing nose, gargling or kicking ball) are harder
to model using a cross-modal audio-visual framework.
As a result, the features learned for such classes are
less discriminative.

Faulty positive detection performance To ob-
tain a rough estimate of performance of the faulty pos-
itive detection procedure, we randomly sampled 100
videos from the 10000 most likely faulty positives, as
identified by Robust-xID trained on the full Kinetics
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Figure 4: Retrievals. In each row, the first image depicts the query video, and the following four images depict the top 4 retrievals.
The corresponding Kinetics class description is provided above each frame. Each video is represented by a 4 × 4 × 512 feature map
produced by the video encoder learned using Robust-xID on the full Kinetics dataset. Euclidean distance is used to determine video
similarity.

dataset. We then manually labeled them according to
how related their audio and visual signals are. From
those, 67 were clear faulty pairs; 24 contained narra-
tive voice-overs (i.e., required natural language under-
standing to link the two modalities); and 9 samples
were clearly misidentified.
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