
Appendix A. iNaturalist-BG and Places-
BG Details

The original iNaturalist 2017 dataset has 579,184
training images and 95,986 validation images. The
dataset is long-tailed and each individual category is
rare.

• N=5098: Train a single model with all the 5098
categories in the dataset labeled. This corresponds
to the standard setting on the iNaturalist dataset,
with 0% of the data in the background class.

• N=1100: Single model with 1100 categories with
the 100 test categories included in N . 77.95% of
data is in the background category.

• N=100: Single model for all the 100 random test
categories. 98.3% of data is in the background
category.

• N=10: 10 models each trained with a subset of 10
categories from the 100 randomly chosen categories.
99.83% of data is in the background category on
average.

• N =1: 10 binary models for a subset of 10 cate-
gories from the randomly chosen categories. We
limit evaluate our evaluation to 10 categories in
the case of binary models since it is too expensive
to train separate deep binary models for all the 100
categories evaluated in other settings. As such, the
performance for this setting is not directly compa-
rable to the other settings. 99.98% of data is in
the background category on average.

The original Places365 dataset has 1,803,460 training
images and 21,700 validation images across 365 cate-
gories. The number of images per category ranges from
3,068 to 5,000.

• N = 10: 5 models each trained with a subset of
10 categories from the 365 places365 categories.
97.22% of data is in the background category on
average.

• N = 1: 10 binary models for a subset of 10 cat-
egories from the N = 10 chosen categories. We
limit evaluate our evaluation to 10 categories in
the case of binary models since it is too expensive
to train separate deep binary models for all the 100
categories evaluated in other settings. As such, the
performance for this setting is not directly compa-
rable to the other settings. 99.72% of data is in
the background category on average.

Appendix B. Background Thresholding
Details

We write the softmax classifier for Background
Thresholding in Section 3.2 Gw(Fθ(x)) as follows:

p(y = n|x) ∝ ewn·Fθ(x)+bn , n ∈ {0, 1, . . . N} (1)

where Fθ(x) is the nonlinear (deep) embedding shared
across our heads and w = {w0, b0, . . . , wN+1, bN+1}.
Because the weight associated with the background
class (n = 0) can be difficult to estimate given the large
expected variability in appearance, we clamp it to be
the 0 vector:

w0 = 0, b0 = constant (2)

and do not update either during learning. This mod-
ification is equivalent to setting the background class
logit to a fixed constant during learning:

p(y = n|x) = ewn·Fθ(x)+bn

eb0 +
∑N+1
i=1 ewi·Fθ(x)+bi

, n ∈ {1, . . . N}

(3)

where the sum over N class probabilities can now be
less than 1 (where the remaining probability mass is
assigned to the background class). The above model no
longer learns a hyperplane w0 to separate background
examples from the foreground category examples, but
instead classifies an example as background only if
the model produces logit values lower than b0 for all
foreground categories.

Appendix C. Focal Loss Baseline

We add an additional baseline, focal, to Table 1
from the main paper, shown here as Table 1. focal
implements the Focal Loss method [1], which increases
the loss value for difficult to classify examples and
decreases the loss value for easy to classify examples.
We find that the focal baseline performs slightly better
than ft for N=5089, but overall performs worse than
any other baseline.

Appendix D. Generalization of BG Split-
ting learned features

Are the features learned with Background Splitting
more useful for training a classifier for a new set of
categories than the features learned from a standard
fine-tuning baseline? That is, are the features learned by
BG Splitting just better for classifying the target set of
categories, or does BG Splitting produce features which
can be effectively adapted to classify new categories?
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Model Performance: iNaturalist-BG
N = 1 N = 10 N = 100 N = 1100 N = 5089

(99.98%) (99.83%) (98.30%) (77.95%) (0%)

mAP F1 mAP F1 mAP F1 mAP F1 mAP F1

ft 10.6 10.8 9.3 8.9 38.3 38.4 50.9 44.8 57.7 49.9
ldam - - - - 24.7 21.1 41.6 37.1 57.4 55.1
lws - - - - 35.5 36.6 42.5 37.3 60.0 56.9
focal - - - - 5.97 3.94 25.2 21.7 58.3 50.7

bg-split 52.9 51.7 44.6 39.4 47.2 40.7 51.4 44.7 59.9 52.5

Table 1. bg-split outperforms all baselines when the background frequency exceeds 98% on iNaturalist-BG.
A modified version of Table 1 from the main paper, with the addition of the focal baseline. Our conclusions from the
caption in Table 1 in the main paper remain the same.

Method Weight Initialization mAP on 100 new categories (S2)

Fine-tune last layer ft on 100 categories (S1) 15.4
Fine-tune last layer bg-split on 100 categories (S1) 32.4

bg-split (full model training on S2 categories) 44.4

Table 2. Feature generalization study. Using bg-split to train a model for one set of categories (S1) results in features than
generalize well for a different set of categories (S2) compared to ft.

Table 2 shows the accuracy of a linear classifier trained
to classify a set of 100 new classes S2 using features
produced by two methods trained on a different set of
100 classes S1: a standard fine-tuning baseline (ft), and
our method (bg-split). The bottom row is the result
of training the bg-split method to directly classify the
S2 classes and thus represents an upper bound. We find
that the features produced by the bg-split method
are very useful for classifying new sets of categories,
as seen by the 17 point mAP increase from using the
bg-split features versus the ft features. Note that
there is still significant advantage to training the entire
model for the target set of new categories S2, as seen by
further 12 point boost from 32.4 to 44.4 mAP, echoing
our observation in Section 5.4 that using the small set
of positives for the foreground categories is critical.

Appendix E. Batch size study

Classification networks are typically trained with
a batch size of 64 or 128. However, we empirically
observed that, in settings with a large background cate-
gory, larger batch sizes (512 for traditional fine-tuning
and 256 for our approach) result in improved perfor-
mance over small batch sizes. To understand this ef-
fect, we evaluated the performance of both traditional
fine-tuning and our approach for different batch sizes
(Table 3). For traditional fine-tuning, a batch size of
512 results in the best performance. Our approach is
more robust to smaller batch sizes and marginally ben-

efits from increasing the batch size from 128 to 256. A
clear empirical trend we observed is that increasing the
batch size results in higher model precision at the cost
of lower recall. Our hypothesis for this trend is that as
the batches become larger, the model sees more posi-
tives and hard negatives in the same batch, requiring
the model to be more discriminative, thus increasing
precision at the cost of reducing recall. Further explo-
ration of this behavior could lead to better sampling
and batch size selection techniques in scenarios with
extreme imbalance and a majority background cate-
gory. We note that all other experiments in this paper
are performed with a batch size of 1024 in order to
produce results in a reasonable time–although training
with smaller batch sizes results in a small increase in
performance, it requires training much longer and with
lower learning rates to reach convergence.

Appendix F. Background category
downsampling

As the training issues caused by the extremely large
background category are due to imbalance between the
number of foreground and background examples, one
might ask if simply ’downsampling’ the number of back-
ground category instances would solve the problem. We
implemented this approach by selecting increasingly
smaller fractions of the background category images in
the training set, and creating new training sets using
all the foreground images plus this smaller background
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Batch size ft bg-split

AP F1 Recall Precision AP F1 Recall Precision

128 28.4 19.0 53.8 12.9 48.2 44.8 53.0 44.0
256 37.7 30.8 50.8 24.7 48.8 46.6 42.8 61.3
512 38.3 38.4 42.5 41.1 47.9 44.3 37.4 68.1
1024 36.0 35.6 35.2 44.1 47.2 40.7 33.4 67.1

Table 3. Performance of standard fine-tuning and our approach with different batch sizes. Larger batch sizes than the ones
traditionally used in balanced training (64 or 128) significantly improves performance of ft. bg-split (our approach) is
more robust to batch size but also benefits from a larger batch size.

Setting (N = 100)

1% 5% 25% 100%
(36.64%) (74.30%) (93.52%) (98.30%)

AP F1 AP F1 AP F1 AP F1

ft 23.5 18.7 27.9 22.4 36.3 32.5 38.3 38.4
ldam 23.0 5.7 14.8 3.3 13.2 2.7 24.7 21.1
lws 15.0 3.9 12.7 3.8 38.8 39.1 35.5 36.6

bg-split - - - - - - 47.2 40.7

Table 4. AP and F1 scores for baseline methods using a downsampled background category. In all cases, using the downsampled
background category dataset does not result in performance which exceeds our method. In nearly all cases, the downsampled
dataset results in reduced performance because it drastically decreases precision, resulting in a large number of false positives.

set. Table 4 shows the AP and F1 score for the base-
lines when trained with the downsampled background
datasets for 100%, 25%, 5%, and 1% of all background
instances. In nearly all cases, using the downsampled
versions of the dataset results in lower overall perfor-
mance across both AP and F1. In particular, we find
that using these downsampled datasets increases the
recall of the baseline methods, but at drastic cost to
precision, resulting in a lower overall F1 and AP score.
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