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The Supplementary Material provides additional details
about our methods and visualizations of results.

1. Self-Contact Datasets
1.1. 3D Contact Pose (3DCP) Meshes

1.1.1 3DCP Scan

Raw scans have varying topology. To bring a corpus of
scans to a common topology is the process of “registra-
tion”. Most traditional registration methods ignore inter-
penetration and self-contact. Registering our self-contact
scans without modeling self-contact would result in self-
penetration, particularly where the extremities contact the
body. We address this by modifying the registrations objec-
tive function to encourage self-contact without penetration.

Specifically, the fitting objective includes a data termES
evaluating the goodness of fit of the the vertices xv on the
template V to n randomly sampled points, xs on the surface
of the scan S

ES(S;V ) =
1

n

∫
xs∈S

ρ (‖xs − xv‖) (1)

where ρ is the Geman-McClure robust penalty function.
Additionally, we introduce a self-contact preserving en-

ergy term EC to the objective function. The term EC helps
to minimize and preserve the point-to-plane distance be-
tween body parts that are in contact. EC considers the set of
contacting vertex pairs MC defined by Definition 3.1 in the
main paper. For each tuple (vi, vj) inMC , we minimize the
point-to-plane distance between triangles including vi and
the triangular planes including vj . The contact energy term
ensures that body parts that are in contact remain in contact.

The objective function is minimized in two steps: first
a model fitting step, where it is minimized with respect to
the SMPL-X model pose parameters ~θ ∈ R55×3 and body
shape parameters ~β ∈ R25. Following model fitting, a
model-free optimization step minimizes point-to-plane dis-
tance between the model vertices xv and the scan. A sample
of the registrations is shown in Figure 1.

1.1.2 3DCP Mocap.

Sampling meshes from AMASS. First, each mocap. se-
quence is sampled at half of its original frame rate. For
each sampled mesh, we compute the contact signatures MS

with teucl = 3cm, tgeo = 30cm and K = 98. The re-
gions are visualized in Fig. 2. We select only one pose for
each unique signature, while ignoring contact when it oc-
curs in more than 1% of the data. We obtain a subset of
20,114 poses with unique self-contact signatures, as shown
in Fig. 3.

Self-Contact Optimization. Here we provide details
of the self-contact optimization for body meshes from the
AMASS dataset. In this optimization, vertex pairs in MC

are further pulled together via a contact term LC and ver-
tices inside the mesh are pushed to the surface via a pushing
term LP , while LO ensures that vertices far away from con-
tact regions stay in place. Note that LP and LC are slightly
different from the loss terms in the main paper. LH is a
prior for contact between hand and body and LA aligns the
vertex normals when contact happens.

Given the set of vertices MV of mesh M , ME ⊂ MV

denotes the subset of vertices affiliated with extremities,
MI ⊂ MV denotes the subset of vertices inside the mesh,
and MEI = ME ∩MI denotes the vertices of extremities
that are inside the mesh itself andM{

EI its complement. We
identify vertices inside the mesh using generalized winding
numbers [1]. MVH

⊂ MV is the subset of hand vertices.
Note that we make SMPL-X watertight by closing the back
of the mouth. MC is computed following Definition 3.1 in
the main paper with tgeo = 30cm and teucl = 3cm and
MG(vi) = {vj |geo(vi, vj) > tgeo}. Given an initial mesh
Ĩ , we aim to minimize the objective function

L(θb, θhl
, θhr

) =λCLC + λPLP + λHLH+

λOLO + λALA + λθhLθh (2)
λθLθ, (3)
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Figure 1. A representative sample from the registrations. A total of 3 male and 3 female subjects were scanned in a diversity of poses
that involve self-contact. The 3D scans are registered to a common mesh topology by fitting the SMPL-X template mesh to them using a
self-contact preserving energy term that penalizes body part interpenetration.

Figure 2. To compute self-contact signatures, we group vertices
into distinct regions, shown here with different colors. This is use-
ful for searching our scan datasets for poses with specific types of
contact.

Figure 3. Sample poses from 20 unique contact signatures, S. We
apply S to select interesting self-contact poses in AMASS.

where θh denote the hand pose vector of the SMPL-X
model. Further,

LC =
1

|M{
EI |

∑
vi∈M{

EI

aα tanh(
fg(vi)

α
),

LP =
1

|MEI |
∑

vi∈MEI

γ1 tanh(
fg(vi)

γ2
), and

LH =
1

|MVH
|

∑
vi∈MVH

δ1hvi tanh(
fg(vi)

δ2
),

where fg denotes a function, that for each vertex vi finds
the closest vertex in self contact vj , or mathematically
fg(vi) = minvj∈MG(vi) ||vi− vj ||2. hvi denotes the weight
per hand vertex from the hand-on-body prior LH as ex-
plained below, if vi is outside, otherwise hvi = 1. Fur-
ther, a = (minvj∈U(MC) geo(vi, vj) + 1)−1 is an attraction
weight. This weight is higher, for vertices close to vertices
in contact of Ĩ . Lθ is a L2 prior that penalizes deviation
from the initial pose and Lθh defines an L2 prior on the left
and right hand pose using the a low-dimensional hand pose
space. α = 0.04, γ1 = 0.07, γ2 = 0.06 define slope and



offset of the pulling and pushing terms. For the hand-on-
body-prior we use δ1 = 0.023, and δ2 = 0.02 if vi is inside
and δ1 = δ2 = 0.01 if vi is outside the mesh.

Self-contact optimization aims to correct interpenetra-
tion and encourage near-contact vertices to be in contact by
slightly refining the poses around the contact regions. Ver-
tices that are not affected should stay as close to the original
positions as possible. In LO, the displacement of each ver-
tex from its initial position is weighted by its geodesic dis-
tance to a vertex in contact. Given ṽi denoting the position
of vertex i of Ĩ , the outside loss term is

LO = δ2
∑

vi∈MV

min
vj∈U(MC)

geo(vi, vj)
2||vi − ṽi||2,

where minvj∈U(MC) geo(vi, vj) = 1 if MC = ∅ and δ2 =
4. Lastly, we use a term, LA, that encourages the vertex
normals N(v) of vertices in contact to be aligned but in
opposite directions:

LA =
1

|MC |
∑

(vi,vj)∈MC

1 + 〈N(vi), N(vj)〉.

Hand-on-Body Prior. Hands and fingers play an im-
portant role as they frequently make contact with the body.
However, they have many degrees of freedom, which makes
their optimization challenging. Therefore, we learn a hand-
on-body prior from 1279 self contact registrations. For this,
we use only poses where the minimum point-to-mesh dis-
tance between hand and body is < 1mm. These are 718
and 701 poses for the right and left hand, respectively. Since
left and right hand are symmetric in SMPL-X, we unite left
and right hand poses. Across the 1429 poses, the mean dis-
tances per hand vertex to the body surface, dm(vi) ranges
per vertex from 1.79 to 5.52 cm, as visualized in Fig. 4.
To obtain the weights hvi in LH , we normalize dm(vi) to
[0, 1], denoted as s(dm(vi)), and obtain the vertex weight
by hvi = −s(dm(vi)) + 1.

1.2. Mimic-The-Pose (MTP) Data

AMT task details. It can be challenging to mimic a pose
precisely. To simplify the process for workers on AMT, we
give detailed instructions, add thumbnails to compare the
own image with the presented one and, most importantly,
highlight the contact areas; see Fig. 5. To gain more vari-
ety, we also request that participants make small changes in
the environment for each image, e.g. by rotating the cam-
era, changing clothes, or turning lights on/off. We also ask
participants to mimic the global orientation of the center im-
age. For more variety in global orientation, we vary body
roll from−90◦ to 90◦ in 30◦ steps, resulting in seven differ-
ent presented global orientations. For example, in the first
and third row of Fig. 5, the center image shows the pre-
sented pose from a frontal view. In the second and fourth

Figure 4. Hand on body prior. Dark blue indicates small distances
to body on average across all registrations where hands are close
to the body. The prior is identical for left and right hand.

Figure 5. Presentation format and examples of mimicked poses
from the MTP data set. On the left side, the presented pose with
contact highlighted in blue. Humans mimicking the poses on the
right.

row, the center body has different orientations. We also ask
participants for their height, weight, and gender (M, F, and
Non-Binary).

SMPLify-XMC. In the first stage, we optimize body
shape β and camera Π (focal length, rotation and transla-
tion), and body global orientation θg , using ground-truth
height in meters, hgt, and weight in kg, wgt. The objec-
tive function of the first stage is given as

L(β,Π, θg) = λθgLθg + λMLM + EJ .



Figure 6. Functions to regulate the self-contact pushing and pulling
term in SMPLify-XMC. f1 is used in LC , f2 is used in LP .
The parameters ensure that inside vertices are pushed out quickly,
while vertices in contact are pulled together as long as they are
close enough.

LM = e100|Mh−hgt|+e|Mw−wgt| is the measurements loss,
where Mh and Mw are height and weight of mesh M . We
compute height and weight from mesh v-template in a zero
pose (T-pose). For height, we compute the distance between
the top of the head and the mean point between left and
right heel. For weight, we compute the mesh volume and
multiply it by 985 kg/m3, which approximates human body
density. Lθg is a loss that allows rotation around the y-axis,
but not around x and z.

In Fig. 6 we visualize the pushing and pulling terms used
in the SMPLify-XMC objective. We use 6 PCA compo-
nents for the hand pose space and initialize the fitting with
a mean hand pose. In contrast to SMPLify-X we do not ig-
nore hip joints and double the joint weights for knees and
elbows. Before optimization, we resize images and key-
points to a maximum height or width of 500 pixel. Similar
to SMPLify-X we use the PyTorch implementation of fast
L-BFGS with strong Wolf line search as the optimizer [5].
We do not use the VPoser pose prior for SMPLify-XMC
because we have a strong prior from the presented pose.

We notice that the presented global orientation is not
always mimicked well. For example, in row 4 of Fig. 5
the presented global orientation has a 60 degree rotation,
whereas the mimicked image is taken from a frontal view.
To better initialize the optimization, we select the best body
orientation, θg , among the seven presented ones based on
their re-projection errors; then we compute the camera
translation by again minimizing the re-projection error. We
set the initial focal length, fx and fy , to 2170, which is the
average of available EXIF data. These values, along with
mean shape and presented pose are used to initialize the op-
timization.

In addition, SMPL and SMPL-X have not been trained to
avoid self intersection. Therefore, we identify seven body
segments that tend to intersect themselves, e.g. torso and
upper arms (see Fig. 7). We test each segment for self inter-
section and thereby filter irrelevant intersections from MI .

MTP Dataset Details. We sample meshes from
3DCP Scan, 3DCP Mocap., and AGORA [6] to comprise

Figure 7. Body segmented into regions where intersection can hap-
pen, since SMPL and SMPL-X are not trained to avoid self inter-
section. Per segment, we create closed meshes that allow for in-
dividual intersection tests. For self-contact, intersections that hap-
pen within a segment are not relevant. The hands are not included
in any segment, because self intersections within hands or between
hands and lower arm are not plausible and need to be resolved.

Figure 8. Image count in MTP Dataset per 3DCP subset.

Figure 9. Discrete self-contact can be challenging to annotate.
Here we show a few example images that are annotated as having
discrete self-contact between the left upper and lower arm (yellow
circle). In the last two images, however, the upper and lower arm
are barely touching. We do not consider these to be in self-contact.
Another ambiguous case, this time due to occlustion, are the two
legs in the first image. An annotator can only assume that the shin
and calf are touching, based on semantic knowledge about human
pose.

the presented meshes in MTP datatset. In total, we present
1653 different meshes, from which 1498 (90%) are contact
poses following Definition 3.1 in the main document. Of
the 1653 meshes, 110 meshes are from 3DCP Scan, 1304
meshes are from 3DCP Mocap., and 159 are from AGORA.
We collect at least one image for each mesh. From the 3731
collected images, 3421 (92%) images show a person mim-
icking a contact pose. Figure 8 shows how many image we
collected per subset.

1.3. Discrete Self-Contact (DSC) Data.

Image selection. Discrete self-contact annotation may
be ambiguous and we find some annotations that we do
not consider to be functional self-contact. For example, in



Fig. 9, some annotators label the left lower arm and left up-
per arm to be in contact, because of the slight skin touching
at the elbow; we do not treat these as in self-contact. There-
fore, we leverage the kinematic tree structure provided by
SMPL-X and, in order to train TUCH, ignore the following
annotations: left hand - left lower arm, left lower arm - left
elbow, left lower arm - left upper arm, left elbow - left up-
per arm, left upper arm - torso, left foot - left lower leg, left
lower leg - left knee, left lower leg - left upper leg, left knee
- left upper leg, right hand - right lower arm, right lower arm
- right elbow, right lower arm - right upper arm, right elbow
- right upper arm, right upper arm - torso, right foot - right
lower leg, right lower leg - right knee, right lower leg- right
upper leg, right knee - right upper leg.

2. TUCH
Here we provide details of the SMPLify-XMC and

SMPLify-DC methods and how we apply them on MTP and
DSC data respectively.

SMPLify-XMC is explained in Sec. 4.2 of the main
paper. It is applied, before the training, to all MTP im-
ages to obtain gender-specific pseudo ground-truth SMPL-
X fits. To use these fits for TUCH training, two pre-
processing steps are necessary. First, they are converted
to neutral SMPL fits. Second, we transform the converted
SMPL fits to the camera coordinate frame estimated dur-
ing SMPLify-XMC. This is necessary since SPIN assumes
an identity camera rotation matrix. After that, the data is
treated as ground truth during training, which means we ap-
ply the regressor loss directly on the converted SMPL pose
and shape parameters without in-the-loop fitting.

On the contrary, SMPLify-DC is applied during TUCH
training to images with discrete self-contact annotations.
We run 10 iterations of SMPLify-DC for each image in a
mini batch.

MTP and the DeepFashion subset of DSC do not have
ground-truth 2D keypoints but we find OpenPose detections
good enough in both cases. For the 2D re-projection loss,
we use ground-truth keypoints (if available) and OpenPose
detections weighted by the detection confidence. Each mini
batch consists of 50% DSC and 50% MTP data.

Implementation details: We initialize our regression
network with SPIN weights [4]. We use the Adam opti-
mizer [3] and a learning rate of 1e− 5.

3. TUCHEX

One disadvantage of training with fitting in the loop is
that it is relatively slow. As an alternative, we also ex-
plore Exemplar Fine-Tuning (EFT) [2], which is a regres-
sion based method for fitting 3D meshes to a single image.
The fitted SMPL meshes may then be used as pseudo anno-
tations to train a regressor without in-the-loop optimization.

Figure 10. RGB images from 3DCP Scan Scan test set. A subject
performing a pose with self-contact in a 3D body scanner.

With this approach, the authors train HMR-EFT, with which
they achieve good results on 3DPW and MPI-INF-3DHP.

The idea of using discrete contact annotations is not lim-
ited to optimization based approaches. We show that they
can also be applied in combination with EFT. Specifically,
we extend the regressor loss of EFT with the contact terms
from SMPLify-DC. We denote such an “EFT + contact
loss” approach as EFT-C. Note that the original EFT loss
uses a 2D orientation term to match the lower legs orienta-
tion, which we do not use here.

Each image in DSC is then paired with a pre-computed
pseudo ground truth from EFT-C, and we denote the dataset
as [DSC]EFT-C. Then, we finetune the HMR-EFT network
on MTP, [DSC]EFT-C, as well as other training data from [2].
This new model is called TUCH with EXemplar Finetuning,
TUCHEX . Unlike TUCH that still performs SMPLify-DC
in the training loop, TUCHEX is supervised only by pre-
computed fits so it can be trained faster.

Implementation details. We initialize our network with
state-of-the-art HMR-EFT weights. We train TUCHEX

on [COCO-All]EFT (CAE), H36M, MPI-INF-3DHP (MI),
[DSC]EFT-C, and MTP. [COCO-All]EFT denotes the COCO
dataset after EFT processing, as described in [2]. In each
batch we use a 10% CAE, 20% H36M, 10% MI, 20%
3DPW, 20% [DSC]EFT-C, and 20% MTP. The remaining de-
tails are the same as in the TUCH implementation. For the
DSC dataset, we only consider images where the full body
is visible. To identify these images, we test whether the
OpenPose detection confidence of ankles, hips, shoulders,
and knees is ≥ 0.2. We also ignore discrete contact annota-
tions for connected body parts, as defined in 1.3.

4. Evaluation
3DCP Scan test images. During the scanning process

when creating 3DCP Scan, we also take RGB photos of sub-
jects being scanned, as shown in Figure 10. These images



Finetuning Data MPJPE ↓ PA-MPJPE ↓
contact no contact unclear total contact no contact unclear total

HMR-EFT [2] - 88.3 84.6 83.6 85.3 52.1 53.3 48.5 51.7
TUCHEX CAE + H36M + MI + 3DPW + [DSC]EFT-C + MTP 82.8 83.2 80.3 82.3 50.4 54.1 48.7 51.7

Table 1. Evaluation of TUCHEX for contact classes. CAE = [COCO-All]EFT as denoted in [2]. Bold numbers indicate the better a result.

MPJPE ↓ PA-MPJPE ↓
SPIN 96.9 59.2
TUCH (MTP) 88.7 57.4
TUCH (MTP+DSC) 84.9 55.5

Table 2. Ablation of MTP data and DSC data.

MPJPE ↓ PA-MPJPE ↓
3DPW MI 3DPW MI

HMR-EFT [2] 85.3 105.3 51.7 68.4
TUCHEX 82.3 101.5 51.7 66.4

Table 3. Training with 3DPW. Evaluation on 3DPW and MPI-INF-
3DHP (MI). We report MPJPE and PA-MPJPE for different sub-
sets of our data set.

have high-fidelity ground-truth poses and shapes from the
registration process described in Sec. 1.1.1, making them
a good test set for evaluation purposes. It is worth noting
again that TUCH has never seen these images or subjects,
but the contact poses were mimicked in creation of MTP,
which is used in training TUCH.

TUCH. In Fig. 11 we visualize the improvement of
TUCH over SPIN qualitatively. One can see that TUCH
reconstructs bodies with better self-contact and less inter-
penetration (row 1 and row 2). Fig. 12, on the other hand,
shows examples where SPIN is better than TUCH. Four of
the images in Fig. 12 do not show the full body (rows 3,
4, 5, and 8). A possible reason why SPIN is better than
TUCH in these cases is that MTP images always show the
full body of a person, thus TUCH could be more sensitive
to occlusion than SPIN.

We also evaluate the contribution of MTP data by fine-
tuning SPIN only with it. The results are reported in Ta-
ble 2, where TUCH (MTP+DSC) is the same as reported
in Table 3 of the main paper. This experiment shows that
MTP data alone is already sufficient to significantly im-
prove state-of-the-art (SOTA) methods on 3DPW bench-
marks. This suggests that the MTP approach is a useful
new tool for gathering data to train neural networks.

TUCHEX . For an additional comparison with SOTA
EFT [2], we evaluate our TUCHEX model on the same
datasets (3DPW, MPI-INF-3DHP (MI), and 3DCP Scan)

MPJPE ↓ PA-MPJPE ↓ MV2VE ↓
HMR-EFT [2] 71.4 48.3 83.9
TUCHEX 73.4 43.3 82.8

Table 4. Evaluation on 3DCP Scan test images. We report MPJPE,
PA-MPJPE, and MV2VE.

with error measures (MPJPE, PA-MPJPE, and MV2VE)
like TUCH, see Tables 1, 3, and 4.

The MPJPE of TUCHEX improves over HMR-EFT
when evaluated on 3DPW. PA-MPJPE improves for contact
poses and is overall on-par. Also the results on MPI-INF-
3DHP improve. For the 3DCP Scan test set, PA-MPJPE im-
proves. This shows that our data can not only be used with
optimization based approaches, but also with exemplar fine-
tuning, and that it allows us to improve the latest models in
terms of estimating poses with contact.



Figure 11. Qualitative results on the self-contact subset of 3DPW. We find all images with an improvement on MPJPE and PA-MPJPE ≥
10 mm. From this subset, we select interesting poses. Left column, RGB image for reference. In blue, TUCH result and in violet, the SPIN
result.



Figure 12. Qualitative results on the self-contact subset of 3DPW. We find all images where SPIN is better than TUCH by at least 10 mm
for MPJPE and PA-MPJPE. From this subset, we select interesting poses. Left column, RGB image for reference. In blue, TUCH result
and in violet, the SPIN result.
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