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1. Creating C-GQA
We introduced a new benchmark for Compositional

Zero-shot Learning (CZSL) in the main manuscript. This
benchmarks is based on the original GQA [2] dataset which
is annotated with scene graphs where each bounding box is
labelled with state-object or any other relations in the scene.
For the creation of the benchmark, we only consider the
bounding boxes with a single state-object relation to be con-
sistent with existing works. Bounding boxes smaller than
112 × 112 are excluded because they are in half the input
size of most feature extractors. From these bounding boxes,
we collect the vocabulary of state and objects to remove
overlapping concepts between state and object classes. We
also merge plurals and synonyms using first wordnet [6] and
then manual checking. This yields the final vocabulary of
457 states and 893 objects.

We define a novel composition as a state-object pair not
present in the training set. We now want to generate a val-
idation and test set consisting of seen and novel composi-
tions. We partition the testset of GQA randomly with re-
spect to scene graphs into the validation and test sets of
C-GQA with a probability of 0.45 and 0.55 respectively.
These numbers are chosen as the test set of C-GQA losses
bounding boxes overlapping with the novel compositions in
validation set. From the bounding boxes, we add the novel
compositions in these graphs to the unseen set Yn−val and
Yn−test respectively. However, the number of novel com-
positions is very small compared to the compositions in the
training set represented by Ys. Therefore, we further divide
the remaining compositions in validation randomly into Ys
and Yn−val. We then remove the unseen compositions of
the validation set from the test set and divide the remaining
compositions randomly into Ys and Yn−test. Finally we
remove the novel compositions Yn−val and Yn−test from
Ys and generate the images from the bounding boxes of the
scene graph for the 3 sets.

This results in a training set consisting of 7882 pairs
across 26k images; a validation set consists of 893 seen and
834 unseen pair across 4k images; and a testset consists of
845 seen and 705 unseen pairs across 5k images. In total C-
GQA has a compositional space of over 9.5k compositional
concepts making it the most extensive dataset for CZSL.

With cleaner labels and a bigger label space, we hope this
dataset is able to accelerate the research in the field.

2. Additional Experiments
2.1. AUC at different k.

We reported the top1 AUC for the three datasets in the
Table 2 of our main manuscript. We report top 1,2,3 AUC
for the 3 datasets in table 1 to allow direct comparison with
older works that adopt this evaluation. We see that the
trend from the main manuscript is consistent at different
k. In particular on MIT-States, our model CGE achieves
top3 AUC of 21.3 compared to 12.3 of the closest baseline
Symnet continuing our 2× improvement. On UT-Zappos,
CGE maintains its lead by achieving a top3 AUC of 77.5
compared to 69.8 of TMN. Finally on C-GQA, CGE again
achieves a 2× improvement by achieving a top3 AUC of 6.4
compared to 3.3 of Symnet.

2.2. End-to-end training with baselines

We studied the impact of feature representations on the
performance of the model in section 4 of the main paper.
We showed that our model CGE benefits greatly from end
to end training. Older baselines TMN and Symnet operate
on a frozen ImageNet trained Resnet18 CNN backbone for
feature extraction in their respective manuscripts. In this
experiment, we train TMN and Symnet end to end (repre-
sented by EE) from the ImageNet- pretrained Resnet18 (the
same with our CGE) and quantify if they are held back by
the ImageNet representations on the validation set of MIT-
States.

We see from table 2 that finetuning the CNN backbone
results in worse performance than in the original implemen-
tations as they are overfitting to the training set with an AUC
of 2.9 for TMN[11] and 3.9 for SymNet[4], while end-to-
end training is beneficial for our CGE which achieves an
AUC of 8.6 because of our graph regularization.

2.3. Ablation over the GCN

We reported ablation over various components of the
Graph Convolutional Network (GCN) used in our model
in the section 4.2 of the main manuscript. We ablate over
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MIT-States UT-Zap50K C-GQA
Val AUC Test AUC Val AUC Test AUC Val AUC Test AUC

Top k→ 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

AttOp[9] 2.5 6.2 10.1 1.6 4.7 7.6 21.5 44.2 61.6 25.9 51.3 67.6 0.8 2.2 3.4 0.4 1.1 1.7
LE+[8] 3.0 7.6 12.2 2.0 5.6 9.4 26.4 49.0 66.1 25.7 52.1 67.8 0.9 2.2 3.2 0.4 1.0 1.5
TMN[11] 3.5 8.1 12.4 2.9 7.1 11.5 36.8 57.1 69.2 29.3 55.3 69.8 1.7 4.2 6.4 0.8 1.8 2.9
Symnet[4] 4.3 9.8 14.8 3.0 7.6 12.3 25.9 50.9 64.5 23.9 48.2 64.4 2.9 5.1 7.4 1.0 2.3 3.3
CGEff (Ours) 6.8 14.6 20.2 5.1 11.8 17.3 38.7 60.2 73.2 26.4 55.6 71.0 3.5 7.4 10.4 1.4 3.2 4.5

CGE (Ours) 8.6 17.6 24.9 6.5 14.7 21.3 43.2 64.5 77.7 33.5 64.2 77.5 5.3 10.7 14.6 2.5 4.6 6.4

Table 1: AUC in percentage on MIT-States, UT-Zap50K and GQA. We consistently outperform the baselines by a significant
margin.

Method AUC Best HM

TMN EE [11] 2.9 13.0
Symnet EE [4] 3.9 15.3
CGE (Ours) 8.6 23.4

Table 2: End-to-End training results

Dataset Embedding Model
gl w2v ft gl+w2v ft+gl ft+w2v

MIT-States [3] 6.4 6.4 6.5 6.6 6.6 6.8
UT-Zappos [12] 38.6 38.7 37.5 37.0 36.2 38.1
C-GQA (Ours) 3.4 3.5 3.2 3.4 3.3 3.5

Table 3: Ablation over embedding: We use three pop-
ular word embedding models. (ft: Fasttext[1], w2v:
Word2Vec[5] and gl: Glove[10])

the remaining components of the GCN. For these exper-
iments, we use the fixed feature extractor version of our
model CGEff to quantify the improvements directly from
the graph wrt to the word embeddings used for initialization
and the learnable GCN configuration.

Choice of embedding. We test three popular word em-
bedding models and the concatenation of their features for
every word to study their impact on the performance of
our model. We report the results in Table 3. We see that
MIT-States benefits most from the concatenation of fasttext
and word2vec models as these models are closely related
to achieve a AUC of 6.8. While UT-Zappos and C-GQA
achieve the best results with Word2Vec at 38.7 and 3.5 AUC
respectively.

Graph architecture. We ablate over the learnable ar-
chitecture of GCN at different depth and hidden dimension
on the validation set of MIT-States and report results in ta-
ble 4a. We observe that increasing the hidden dimension is
generally beneficial when we go from 1024 to 4096 as the
performance increases from an AUC of 6.53 to 6.80. How-
ever, increasing the hidden dimension from 4096 to 8192
decreases the AUC to 6.59 at 2 layers of GCN. Increas-

Num layers
2 4 6 8 10

1024 6.53 6.13 5.58 5.07 4.33

H
id

de
n

di
m

2056 6.59 6.20 6.14 5.68 5.10
4096 6.80 6.30 6.20 5.83 4.95
8184 6.59 6.27 6.27 5.63 4.71

(a) Ablation over GCN
Num layers

2 4 6 8 10

1024 5.56 5.21 5.44 5.43 5.12

H
id

de
n

di
m

2056 6.00 6.10 6.00 5.92 5.84
4096 6.11 6.00 6.22 6.11 5.76
8184 6.54 6.14 6.00 5.61 5.32

(b) Ablation over GCNII

Table 4: Ablation over the depth and hidden dimension of
the GCN on CGEff

ing the depth of the GCN network generally results in a
decrease in performance across all hidden dimensions. In
particular, at 4096 the AUC decreases from 6.80 AUC to
4.95. In order to validate if this is a consequence of lapla-
cian smoothing we use a recent version of graph convolu-
tion called GCNII[7]. We see from table 4b that the perfor-
mance decrease across columns is less pronounced at dif-
ferent hidden dimensions for this model. However, the best
AUC achieved at 6.54 is less than we achieved with the orig-
inal GCN indicating that this version of graph convolution
is less beneficial for our problem.

References
[1] Piotr Bojanowski, Edouard Grave, Armand Joulin, and

Tomas Mikolov. Enriching word vectors with subword infor-
mation. Transactions of the Association for Computational
Linguistics, 5:135–146, 2017. 2

[2] Drew A Hudson and Christopher D Manning. Gqa: A new
dataset for real-world visual reasoning and compositional

2



question answering. In CVPR, 2019. 1
[3] Phillip Isola, Joseph J Lim, and Edward H Adelson. Dis-

covering states and transformations in image collections. In
CVPR, 2015. 2

[4] Yong-Lu Li, Yue Xu, Xiaohan Mao, and Cewu Lu. Sym-
metry and group in attribute-object compositions. In CVPR,
2020. 1, 2

[5] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado,
and Jeff Dean. Distributed representations of words and
phrases and their compositionality. In NIPS, 2013. 2

[6] George A Miller, Richard Beckwith, Christiane Fellbaum,
Derek Gross, and Katherine J Miller. Introduction to word-
net: An on-line lexical database. International journal of
lexicography, 3(4):235–244, 1990. 1

[7] Zhewei Wei Ming Chen, Bolin Ding Zengfeng Huang, and
Yaliang Li. Simple and deep graph convolutional networks.
In ICML, 2020. 2

[8] Ishan Misra, Abhinav Gupta, and Martial Hebert. From red
wine to red tomato: Composition with context. In CVPR,
2017. 2

[9] Tushar Nagarajan and Kristen Grauman. Attributes as op-
erators: factorizing unseen attribute-object compositions. In
ECCV, 2018. 2

[10] Jeffrey Pennington, Richard Socher, and Christopher D Man-
ning. Glove: Global vectors for word representation. In
Proceedings of the 2014 conference on empirical methods in
natural language processing (EMNLP), pages 1532–1543,
2014. 2

[11] Senthil Purushwalkam, Maximilian Nickel, Abhinav Gupta,
and Marc’Aurelio Ranzato. Task-driven modular networks
for zero-shot compositional learning. In ICCV, 2019. 1, 2

[12] Aron Yu and Kristen Grauman. Fine-grained visual compar-
isons with local learning. In CVPR, 2014. 2

3


