
All Labels Are Not Created Equal : Enhancing Semi-supervision via Label
Grouping and Co-training

Supplementary Material

A. Probabilistic Interpretation of SemCo
In this section, we provide a probabilistic interpretation

of our method described in Sec. 4.1

We start by recalling the general form of recent pseudo-
labeling methods captured by the below formalization for
the unsupervised loss:

L(θ) =
−1

µ · n

µn∑
j=1

ηj log p(y = ŷj |uj ,θ), (1)

which is typically added to the loss for the labeled data. To
reiterate, we use θ to represent learnable model parameters.
For an unlabelled input ui, ŷ denotes the pseudo-label and
η is an arbitrary function. The choice of ŷ and η gives rise
to three distinct variations of pseudo-labeling that can be
written as,

ŷj = arg max
y′

p(y = y′ |uj ,θ) with ηj = 1, (2)

ŷj =
exp(f`(uj)/T)∑
k exp(fk(uj)/T)

with ηj = 1, and (3)

ŷj = arg max
y′

p(y = y′ |uj ,θ) (4)

with ηj = 1(p(y = ŷj |uj ,θ) ≥ τ).

The first approach (Eqn. 2) corresponds to naive pseudo-
labeling where the class with the highest confidence is used
as a pseudo-label regardless of its score, while the second
(Eqn. 3) improves on that by employing temperature sharp-
ening [3] via T . For brevity, we use f` is the onehot logit for
class `. Sharpening the pseudo-label implicitly encourages
entropy minimizaton [11] whereby the classifier is encour-
aged to produce high confidence predictions on the unla-
beled data. The third approach (Eqn. 4) adopted in [31, 19]
where the unlabeled sample is only retained for pseudo-
labeling if the max confidence score exceeds a predefined
threshold, τ . This simultaneously encourages entropy min-
imization2 and decrease confirmation bias (see Sec. 1) by

1All section, table, and figure references are following the original pa-
per numbering.

2Note that it is equivalent to sharpening with T → 0

only retaining high confidence samples.
As opposed to above methods, we additionally propose

to take a multi-view approach in which we have y′ as dif-
ferent representation of the label as well as a grouping of
the similar labels potentially (but not necessarily) obtained
from it. We consider this additional label to be condition-
ally independent of the one-hot representation of the label.
Specifically, instead of Eqn. 1, we propose to minimize the
objective,

L(θ) = −1
µ · n

∑
j

log
(
p(y = ŷj |uj ,θ)p(y′ = ŷ′j |uj ,θ)

ηj
)
,

p(y′ = ŷ′j |uj ,θ) =
∑
c

p(y′ = ŷ′j | c,uj ,θ)︸ ︷︷ ︸
additional classification

p(c | Y ′,θ)︸ ︷︷ ︸
grouped semantics

,

(5)

where Y ′ denotes the collection of the labels which we con-
sider to be conditionally independent of the conventional
one-hot label. We use the density-based clustering to calcu-
late p(c | Y ′,θ). Then by using Jensen’s inequality, we have
the following as the upper-bound on the loss in Eqn. 5:

L(θ) ≥ −1

µ · n
∑
j

ηj

[
log (p(y = ŷj |uj ,θ))

+
∑
c

log
(
p(y′ = ŷ′j | c,uj ,θ)

)
︸ ︷︷ ︸

Sec. 4.1

p(c | Y ′,θ)︸ ︷︷ ︸
Sec. 4.5

]
.

(6)

which indicates the log-likelihood of the additional labels
are weighted by the grouping of their semantic relation-
ships. We use the fsc in the paper to denote the classifier
head that predicts these additional labels.

B. Obtaining Label Embeddings using Con-
ceptNet Knowledge Graph

In this section, we elaborate on the process described in
Sec. 4.5 which aims to obtain class label embeddings which
correlate well with visual similarity. We start by describing
the procedure and then we present some qualitative exam-
ples to demonstrate its effectiveness.

B.1. Procedure

We follow a similar procedure to that described in [33]
with one crucial difference. Instead of using the entire Con-
ceptNet graph, we use the graph after filtering it to retain
only the relations which imply visual similarity (see Sec. 5
for more details).

We start with the filtered graph, the GloVe word embed-
dings matrix, and the word2vec word embeddings matrix.
The process comprises two main steps: 1) retrofitting each
of the GloVe and word2vec embeddings using the Concept-
Net filtered graph to obtain two new sets of embeddings,
and 2) combining the two retrofitted sets to obtain our final
hybrid embeddings set.
Retrofitting Given the filtered graph and a matrix of word
embeddings, the aim is to infer for each term/word a new
embedding vector vi which is close to the original vector
v̂i but also close to the term neighbors in the graph with
edgesE. This can be achieved by minimizing the following
objective function.

E(v) =

n∑
i=1

αi ‖vi − v̂i‖2 +
∑

(i,j)∈E

βij ‖vi − vj‖2
 ;

with αi = 1 if term i is present in the embeddings vocabu-
lary and zero otherwise; and βij denoting the weight of the
edge connecting term i and term j. Note that the use of α
allows optimizing the above objective for terms which ap-
pear in the knowledge graph even if it is not present in the
vocabulary of the word embeddings [32]. To minimize the
above function, we follow the iterative algorithm originally
suggested by Faruqui et al. [8] and later extended by Speer
et al. [32]. We perform such optimization twice: once for
the GloVe embeddings and another for the word2vec.
Combining the Two Sets After applying retrofitting to both
matrices, we combine them by finding a globally linear pro-
jection that aligns the results based on their common vo-
cabulary. As inspired by [45] and [33], to find such pro-
jection, we concatenate the columns of the two matrices
and use SVD to reduce their dimensionality to 128. Such
alignment allows us to deduce compatible embeddings for
terms which appear in one of the vocabularies but not the
other. This alignment and merging give rise to a hybrid set
of embeddings which combines all three sources: GloVe,
word2vec, and ConceptNet filtered graph. We use this set
as the basis for establishing the prior on visual similarity
among a given set of class labels (see Sec. 4).
Handling Out-of-Vocabulary Labels Our obtained em-
beddings vocabulary consists of approximately 500k dif-
ferent terms and hence provides a reasonable coverage for
most of the class labels. However, it might sometimes be
the case that one or more of the class labels are missing
from the vocabulary. In such event, we employ a fall-out

strategy to find the most reasonable alternative. We present
the flowchart for our fall-out strategy in Fig. 5.

B.2. Label Grouping Examples

As mentioned in Sec. 4, we apply density-based cluster-
ing on the class labels embeddings to group the labels into
visually similar concepts. To demonstrate the effectivness
of the retrofitted embeddings in capturing said similarity,
we compare the clustering output if we use the retrofitted
embeddings as opposed to if we use the GloVe distributional
embeddings without retrofitting. We perform this compar-
ison for Mini-ImageNet (see Table 6,7), CIFAR-100 (see
Table 8,9), and DomainNet classes (see Table 10,11). Note
that we only report the groups having more than one mem-
ber and we omit single-member groups. We observe that
in all three cases, clustering the retrofitted embeddings pro-
duces groups which largely match our intuition about vi-
sual similarity. On the other hand, we notice that clustering
the non-retrofitted GloVe embeddings results in grouping
labels which usually appear in similar context, even if they
are not visually similar. For example, in Table 9, we ob-
serve that “sea” was grouped with other classes which are
contextually related to “sea”, yet bear no visual similarity to
it. This is due to the fact that GloVe embeddings are learnt
in a way that captures distributional semantics rather than
visual semantics. However, when the GloVe embeddings
are retrofitted with the ConceptNet filtered graph, we wit-
ness an improved grouping which aligns better with visual
semantic similarity.

C. Implementation Details

Hyperparameters In our preliminary experiments, we
mostly found that our method is not sensitive to the hyper-
parameters, so we tuned their values via a validation set on
a single experiment (CIFAR100 - 2500 labels) then fixed
them across all other experiments to the values shown in Ta-
ble 5. The only exception is the density-based clustering pa-
rameter ε. The number of clusters (i.e. label groups) is auto-
matically decided based on ε, which denotes the maximum
cosine distance between two embedding vectors for one to
be considered in the same neighbourhood as the other. The
larger the value of ε, the more aggressive the grouping is
(i.e. the more members in each group). Accordingly, we
tune ε individually for each dataset. We find that ε = 0.2
works well for all datasets except Mini-ImageNet where we
use ε = 0.3 instead. In Fig. 8, we demonstrate the effect of
varying ε on the error rate using a single split of CIFAR-100
(2500 labeled instances) when training for 100 epochs.

Semantic Classifier Loss We use two different loss func-
tions for our two classifiers, i.e. cosine loss for the Seman-
tic Classifier, and cross-entropy for the One-Hot Classifier
(see Sec. 4). It is, hence, important to consider the scale of

Figure 5: A flowchart describing our label embedding lookup strategy aiming to find the most reasonable embedding for a
given class label. We include demonstrative examples for each of the fall-out cases.

Table 5: Hyper-parameters values across all our experiments

Hyper-parameter Description Value
λu Unlabeled loss coefficient 1.00
λco Co-training loss coefficient 1.00
τe Pseudo-labeling confidence threshold for the Semantic Classifier 0.70
τo Pseudo-labeling confidence threshold for the One-Hot Classifier 0.95
batch size Number of labeled images per batch 64
µ Ratio between number of unlabeled and labeled images in each batch 3
images per epoch Number of labeled images per epoch 64× 1024
num epochs Number of epochs of training 300
lr learning rate max value (10 epochs warmup then cosine decay) 0.03
weight decay Weight decay regualrization coefficient 5.00× 10−4

momentum Nesterov momentum for SGD optimizer 0.90
emb dim Dimensionality of the label embeddings 128
ε DBSCAN clustering coefficient denoting the maximum distance between

two samples for one to be considered as in the neighborhood of the other 0.20

both losses so that one doesn’t dominate over the other. Co-
sine loss values are bounded between 0 and 2 while cross-
entropy values are not. Accordingly, we multiply the Se-
mantic Classifier loss by a factor of 3 before applying the
back propagation step. We obtained such value by using
a held-out validation set on CIFAR-100 (1000 labeled ex-
amples) and we fixed it across all other experiments and
datasets.

Augmentations As described in Sec. 2, we make use of
two types of augmentations, i.e. weak and strong. For weak
augmentations, we use random cropping and padding, and
random horizontal flips. As for the strong augmentations,
we use the RandAugment [6] list of transformations for both
our system and the FixMatch baseline.

Inference Since we train two classifiers in our method, dur-
ing inference time, we can choose one of three options for
inference: 1) use the One-Hot Classifier prediction, 2) use
the Semantic Classifier prediction, 3) Average the softmax
scores of the two classifiers and use the combined score for
prediction. During our validations, we found that the for-

mer approach always yields marginally better results, so we
use it as our basis for inference. Finally, We also use an
exponential moving average of model weights with a decay
rate of 0.999.

D. Further Pseudo-labeling Analysis

In Fig. 2 in the main text, we present a compari-
son between pseudo-labeling statistics (on Mini-ImageNet
dataset) of our method versus the baseline. In this section,
we elaborate about the experimental setup for obtaining
these statistics. Additionally, we provide similar analysis
on CIFAR-100 dataset.

For a given dataset, we run our algorithm for 10 epochs
of unlabeled data and we capture a highly granular view of
the pseudo-labeling statistics for each mini-batch. Conse-
quently, we calculate two metrics: 1) we use the true labels
of the unlabeled data samples (which we originally ignore to
emulate an SSL setting) to measure the true pseudo-labeling
accuracy for each of the classes in the dataset, and 2) we
use the classifier confidence scores to calculate the pseudo-

Visually similar classes Visually distinct classes Visually similar classes Visually distinct classes
FixMatch Ours

girl boy crab lobster sunflower orange wardrobe plain girl boy crab lobster sunflower orange wardrobe plain

60%

40%

20%

60%

40%

20%

Figure 6: CIFAR-100 confidence-based pseudo-labeling comparison between the baseline (left) and our method (right).
Accuracy values show how much, on average, pseudo-labels for a given class match the true label, while Ratio values show
the percentage of samples of a given class which are retained for pseudo-labeling (i.e. with confidence score above the
threshold). The two metrics are calculated for the 4 most (red) and least (green) visually similar classes over the first 10
epochs of training.

(a) Mini-ImageNet

boy

girl

lobster

crab

(b) CIFAR-100

Figure 7: The most confused images for the 4 most visually similar classes of Mini-ImageNet (left) and CIFAR-100 (right).
The caption next to each image group denotes the true class to which the image group belongs.

labeling ratio for each class, which represents the amount
of unlabeled samples exceeding the confidence threshold
and thereby are retained for pseudo-labeling. We repeat the
same procedure and measure the same metrics for our base-
line [31]. We, then, display those metrics for the 4 classes
which were deemed by our clustering method as the most
visually similar concepts. Conversely, we also display them
for the 4 classes which are deemed most visually distinct.
In Fig. 6, we report these metrics for CIFAR-100 dataset
(see Fig. 2 for Mini-ImageNet). Additionally, through the
same experimental setup described above, we keep track of
pseudo-labeling statistics for each individual unlabeled im-
age. We report in Fig. 7 the most confused images among
the 4 most visually similar classes for both datasets. We
define confusion as the average number of times a given
image is incorrectly pseudo-labeled as another class within
the 4 classes (e.g. “boy” pseudo-labeled as “girl”).

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
epsilon ()

34

36

38

40

42

Er
ro

r R
at

e
(%

)

Tuning epsilon ()

Figure 8: Error rates for different values of ε. ε = 0 corre-
sponds to no label grouping, while ε > 0.7 corresponds to
grouping all labels into a single cluster.

Table 6: Mini-ImageNet class groups obtained by clustering the retrofitted embeddings.

Group Members
Group 1 ’French bulldog’, ’Ibizan hound’, ’Saluki’, ’Walker hound’, ’golden retriever’, ’malamute’, ’miniature poodle’
Group 2 ’catamaran’, ’yawl’
Group 3 ’frying pan’, ’wok’
Group 4 ’horizontal bar’, ’parallel bars’

Table 7: Mini-ImageNet class groups obtained by clustering the GloVe embeddings.

Group Members
Group 1 ’African hunting dog’, ’French bulldog’, ’Ibizan hound’, ’Walker hound’, ’golden retriever’, ’miniature poodle’
Group 2 ’combination lock’, ’garbage truck’, ’horizontal bar’, ’parallel bars’, ’pencil box’, ’street sign’

Table 8: CIFAR-100 class groups obtained by clustering the retrofitted embeddings.

Group Members
Group 1 ’aquarium fish’, ’flatfish’, ’trout’
Group 2 ’bicycle’, ’motorcycle’
Group 3 ’boy’, ’girl’
Group 4 ’crab’, ’lobster’
Group 5 ’dolphin’, ’whale’
Group 6 ’man’, ’woman’
Group 7 ’oak tree’, ’pine tree’

Table 9: CIFAR-100 class groups obtained by clustering the GloVe embeddings.

Group Members
Group 1 ’aquarium fish’, ’crab’, ’dolphin’, ’lobster’, ’sea’, ’shark’, ’trout’, ’turtle’, ’whale’
Group 2 ’elephant’, ’fox’, ’house’, ’leopard’, ’lion’, ’man’, ’pickup truck’, ’road’, ’table’, ’tiger’, ’tractor’, ’wolf’, ’woman’
Group 3 ’bicycle’, ’motorcycle’
Group 4 ’bus’, ’train’
Group 5 ’crocodile’, ’lizard’, ’snake’
Group 6 ’raccoon’, ’squirrel’
Group 7 ’oak tree’, ’pine tree’

Table 10: DomainNet class groups obtained by clustering the retrofitted embeddings.

Group Members
Group 1 ’basketball’, ’soccer ball’
Group 2 ’beard’, ’goatee’, ’moustache’
Group 3 ’bicycle’, ’motorbike’
Group 4 ’birthday cake’, ’cake’
Group 5 ’bracelet’, ’necklace’
Group 6 ’cello’, ’clarinet’, ’guitar’, ’piano’, ’saxophone’, ’trombone’, ’trumpet’, ’violin’
Group 7 ’crab’, ’lobster’
Group 8 ’oven’, ’stove’
Group 9 ’pants’, ’shorts’, ’underwear’
Group 10 ’pickup truck’, ’truck’
Group 11 ’wine bottle’, ’wine glass’

Table 11: DomainNet class groups obtained by clustering the GloVe embeddings.

Group Members
Group 1 ’airplane’, ’helicopter’
Group 2 ’ambulance’, ’hospital’
Group 3 ’apple’, ’blackberry’
Group 4 ’asparagus’, ’broccoli’, ’peas’
Group 5 ’axe’, ’knife’, ’sword’
Group 6 ’backpack’, ’suitcase’
Group 7 ’banana’, ’blueberry’, ’pineapple’, ’strawberry’
Group 8 ’baseball’, ’basketball’
Group 9 ’baseball bat’, ’bat’
Group 10 ’bathtub’, ’sink’, ’toilet’
Group 11 ’beard’, ’goatee’, ’moustache’
Group 12 ’bracelet’, ’necklace’
Group 13 ’bread’, ’cake’, ’cookie’, ’peanut’, ’pizza’, ’sandwich’
Group 14 ’bus’, ’train’
Group 15 ’carrot’, ’onion’, ’potato’
Group 16 ’crab’, ’dolphin’, ’fish’, ’lobster’, ’octopus’, ’shark’, ’whale’
Group 17 ’crayon’, ’pencil’
Group 18 ’fireplace’, ’microwave’, ’oven’, ’stove’
Group 19 ’jacket’, ’pants’, ’shorts’, ’sweater’, ’underwear’
Group 20 ’raccoon’, ’squirrel’
Group 21 ’radio’, ’television’
Group 22 ’snowflake’, ’snowman’
Group 23 ’toothbrush’, ’toothpaste’

