
Neural Prototype Trees for Interpretable Fine-grained Image Recognition:
Supplementary Material

Meike Nauta1 Ron van Bree1 Christin Seifert1,2

1 University of Twente, the Netherlands 2 University of Duisburg-Essen, Germany
m.nauta@utwente.nl, r.j.vanbree@student.utwente.nl, christin.seifert@uni-due.de

S1. Training Details

We train the neural network f and the prototypes of
a ProtoTree with Adam [6], and the leaves with our
derivative-free algorithm. As shown in Table S1, the pro-
totypes and leaves are only a fraction of the trainable pa-
rameters and therefore barely give any overhead. However,
note that the number of prototypes and number of leaves
will exponentially increase when increasing height h.

Part Layer (Output) Shape Total # Pa-
rameters

f
ResNet50 (without
avgpool and fc-layer)

(2048, 7, 7) 23,508,032

1× 1 Conv2D (256, 7, 7) 524,288
P 255×1×1×256 65,280
c 256× 200 51,200

Total 24M

Table S1: Trainable parameters in a ProtoTree with height
h = 8 and D = 256, for CUB-200-2011 with 200 classes.

For CUB, we use the backbone of [9] pretrained on iNat-
uralist2017 for 180 epochs. For CARS, we use a ResNet50
pretrained on ImageNet. This backbone, except for the last
convolutional layer, is frozen for some epochs (Table S2).
The 1× 1 convolutional layer is initialized with Xavier ini-
tialization [4]. The prototypes, the last layers of f , and the
backbone each have their specified learning rate, as indi-
cated in Table S2.

Data Augmentation For CUB, we crop each training im-
age offline into four corners based on the bounding box an-
notations, and include the full image resulting in 5 images
per original image. We then resize each image to 224×224.
Test images are not cropped and resized to 224 × 224. To
make our visualizations comparable to ProtoPNet [1], we
select the nearest training image patch for each prototype
by considering cropped training images only.

Data Parameter Value

All

Batch size 64
Input image size 224× 224
Output image size 7× 7
H1 1
W1 1
Learning rate prototypes 0.001
Learning rate 1×1 conv layer
and last conv layer ResNet50

0.001

Gamma for lr decay 0.5
Epochs backbone frozen 30

CUB

Learning rate pretrained
ResNet50 (except last layer)

1e− 5

Pruning threshold τ 0.01
Number of epochs (after of-
fline data augmentation)

100

Milestones for lr decay 60,70,80,90,100

CARS

Learning rate pretrained
ResNet50 (except last layer)

2e− 4

Pruning threshold τ 0.01
Number of epochs 500
Milestones for lr decay 250,350,400,425,

450,475,500

Table S2: Parameter values when training ProtoTrees for
our experiments.

For CARS, we do not use any annotations. We resize
all images to 256 × 256, apply online data augmentation
and then take a random crop of size 224 × 224. Compara-
ble to ProtoPNet [2], we apply data augmentation includ-
ing random rotation, shearing, distortion, color jitter and
horizontal flipping. Data augmentation details (applied in
an online fashion and implemented in PyTorch) are shown
in Table S3. More complex training and augmentation
techniques, such as AutoAugment [3] and cyclic learning
rates [8], are not used to keep a fair comparison, but might

1

improve accuracy. Similarly, applying more advanced en-
semble techniques, such as bagging and boosting, might
improve the prediction accuracy of a ProtoTree ensemble.

Data Augmentation Value/Scale

All

Brightness jitter (0.6, 1.4)
Contrast jitter (0.6, 1.4)
Saturation jitter (0.6,1.4)
Horizontal flip p = 0.5
Random shear (-2, 2)
Normalization mean 0.485,0.456,0.406

std 0.229,0.224,0.225

CUB

Hue jitter (-0.02, 0.02)
Random rotation 10
Random translation (0.05, 0.05)
Perspective distortion 0.2 (p = 0.5)
Resize (224× 224)

CARS

Hue jitter (-0.4, 0.4)
Random rotation 15
Perspective distortion 0.5 (p = 0.5)
Resize (256× 256)
Random Crop (224× 224)

Table S3: Online data augmentation. Jitter values are based
on [5], except for smaller hue differences since color hue
can be discriminative for classes in CUB.

S2. Prototype Visualization with Class Con-
straints

Prototypes are trainable vectors that, after training, can
be replaced with a latent patch of a training image. Equa-
tion 6 (main paper) shows that the nearest training patch z̃∗n
can be found by looping through all images in the training
set. Whereas ProtoPNet has class-specific prototypes, our
prototypes can be of any class. However, we argue that the
perceptual interpretability of a prototype in ProtoTree T can
be improved by only considering images that have a certain
class label.

Specifically, we require that x∗n should be from the ma-
jority class of any of the leaves reachable by node n. For
each internal node n and corresponding prototype pn, we
define T ′n ⊂ T as a full binary subtree of T with n as root
node, such that Y ′n is the corresponding set of class labels
{argmaxc`

for all ` in T ′n}. T ′n ⊆ T is the set of training
images with class label ∈ Y ′. Then, Equation 6 from the
main paper can be adapted as follows:

pn ← z̃∗
′

n , z̃∗
′

n = argmin
z∈{f(x),∀x∈T ′

n}
||z̃∗ − pn||. (S1)

We denote by x∗n the training image corresponding to
nearest patch z̃∗n when considering all training data, and

x∗
′

n denotes the training image corresponding to nearest
patch z̃∗n with class restrictions as defined in Equation S1.
In our experiments on CUB, we found that the difference
in Euclidean distance from pn to z̃∗

′

n with pn to z̃∗n was
5.86× 10−5 on average, and is therefore negligible. Fig-
ure S1 visualizes three prototypes with and without such
constraints (z̃∗

′

n and z̃∗n). Both visualization methods (with
or without class contraints) also give a similar prediction
accuracy, as shown in Table S4. Interestingly, adding the
class constraints even slightly improves accuracy.

Visualization method Accuracy

Without class constraints (Eq. 6) 82.195± 0.723
With class constraints (Eq. S1) 82.199± 0.726

Table S4: Accuracy of ProtoTree after pruning and visual-
ization for CUB (h = 9) across 5 runs.

Thus, adding the restriction that x∗n should be from the
majority class of any of the leaves reachable by node n does
not negatively impact the accuracy of the model, but could
improve interpretability. Our results in the main paper and
Supplementary material are based on prototype replacement
with class constraints.

S3. Detailed Results
Table S5 compares the deterministic classification strate-

gies with the soft strategy for a ProtoTree trained on CARS.
It shows that, similar to the results for CUB, selecting the
leaf with the highest path probability leads to nearly the
same prediction accuracy as soft routing, since the fidelity
is 1. The greedy strategy performs slightly worse but its fi-
delity is still close to 1. Interestingly, pruning a ProtoTree
of height 11 trained on CARS leads to a much smaller tree,
with an average path length of only 8.6.

Figure S2 shows the maximum values of all leaf distri-
butions for trained ProtoTrees on CARS or CUB. It can be
seen that almost all leaves learn either one class label, or an
almost uniform distribution (1/K).

Table S6) presents the detailed results for ProtoTrees of
various heights trained on CUB or CARS.

Strategy Accuracy Fidelity Path length

Soft 86.58±0.24 n.a. n.a.
Max π` 86.58±0.24 1.000±0.000 8.6±1.7 (11, 4)
Greedy 86.43±0.30 0.992±0.002 8.6±1.7 (11, 4)

Table S5: Soft vs. deterministic classification strategies at
test time. Fidelity is agreement with soft strategy. Min and
max path lengths in brackets. ProtoTree on CARS (h=11,
pruned and replaced), averaged over 5 runs (mean, stdev).

2

Figure S1: Three prototypes occurring in a ProtoTree trained on CUB. The upper row shows prototypes when considering
all images for prototype replacement (Eq. 6). The bottom row shows prototypes when only those images are considered
that have a class label that is from the majority class of any of the reachable leaves (Eq. S1). For example, the left column
shows that the prototype represents a white belly. For a human classifying a bird similar to the bottom left image, perceptual
similarity might be higher for the bottom left prototype than the upper left prototype.

0.
00

5
0.

2
0.

4
0.

6
0.

8
1.

0

Maximum value in σ(c`) for all ` ∈ L

N
um

b
er

of
L

ea
ve

s

316

196

(a) CARS, h = 9

0.
00

5
0.

2
0.

4
0.

6
0.

8
1.

0

Maximum value in σ(c`) for all ` ∈ L

N
um

b
er

of
L

ea
ve

s

1852

196

(b) CARS, h = 11

0.
00

5
0.

2
0.

4
0.

6
0.

8
1.

0

Maximum value in σ(c`) for all ` ∈ L
N

um
b

er
of

L
ea

ve
s

311

1

200

(c) CUB, h = 9

Figure S2: Maximum values of all leaf distributions in a trained ProtoTree.

Dataset h Initial Acc Acc pruned Acc pruned+vis. # Prototypes % Pruned Distance z̃∗n

CUB
(K = 200)

7 41.826± 2.776 41.826± 2.776 41.798± 2.780 127.0± 0.0 0.0 0.0027± 0.0045
8 81.046± 0.674 81.042± 0.676 81.032± 0.680 200.4± 1.2 21.4 0.0025± 0.0047
9 82.206± 0.723 82.192± 0.723 82.199± 0.726 201.6± 1.9 60.5 0.0020± 0.0068
10 82.054± 0.517 82.019± 0.468 82.019± 0.469 203.2± 2.0 80.1 0.0018± 0.0072
11 82.370± 0.575 82.357± 0.580 82.352± 0.572 207.0± 2.7 89.9 0.0038± 0.0313

CARS
(K = 196)

7 53.842± 0.733 53.842± 0.733 53.847± 0.732 127.0± 0.0 0.0 0.0006± 0.0018
8 85.049± 0.384 85.007± 0.398 85.017± 0.393 195.0± 0.0 23.5 0.0005± 0.0018
9 85.601± 0.361 85.586± 0.361 85.586± 0.361 195.2± 0.4 61.8 0.0027± 0.0626
10 86.064± 0.187 86.071± 0.191 86.076± 0.186 195.8± 1.2 80.9 0.0005± 0.0017
11 86.584± 0.250 86.576± 0.245 86.576± 0.245 195.4± 0.5 90.5 0.0005± 0.0016

Table S6: Mean and standard deviation across 5 runs of: 1) accuracy before pruning and visualization, 2) accuracy after
pruning, 3) accuracy after pruning and visualization, 4) number of prototypes after pruning, 5) fraction of prototypes that is
pruned and 6) Euclidean distance from each latent prototype to its nearest latent training patch (after pruning).

3

S4. More Visualized ProtoTrees

Absent Present

Absent Present

Absent Present

Absent Present

Absent

Florida Jay

Present

Boat-tailed Grackle

Absent

American Three-toed Woodpecker

Present

White-breasted Kingfisher

Absent

Parakeet Auklet

Present

Absent

Red-breasted Merganser

Present

Green Kingfisher

Absent

Hooded Merganser

Present

Absent

Brandt Cormorant

Present

Absent

Eared Grebe

Present

Absent

Western Grebe

Present

Pigeon Guillemot

Absent

Frigatebird

Present

Absent

Pomarine Jaeger

Present

Absent

White Pelican

Present

Absent

Artic Tern

Present

Ringed Kingfisher

Absent

Pacific Loon

Present

Figure S3: Subtree of a ProtoTree (CUB, h = 9). Each internal node contains a prototype (left) and the training image from
which it is extracted (right). Each leaf shows the class probability distribution and the label of the class with the highest
probability. Prototypes seem to correctly represent distinctive parts. For example, the Green Kingfisher, Hooded Merganser
and Red-breasted Merganser all have a red-brown spot. Interpreting the top node is a bit challenging. A local explanation
showing the similarity with a test image, or supplementary explanations as presented in [7] could help to clarify this.

Absent Present

Absent Present

Absent Present

Hooded Merganser

Absent

Ivory Gull

Present

Mallard

Absent

Ruby-throated Hummingbird

Present

Absent

White-breasted Nuthatch

Present

Forsters Tern

Absent

Cliff Swallow

Present

Absent Present

Absent

Black-and-white Warbler

Present

Herring Gull

Absent

Rose-breasted Grosbeak

Present

Absent

Blue Jay

Present

Belted Kingfisher

Absent

Yellow-billed Cuckoo

Present

Figure S4: Subtree of an automatically visualized ProtoTree (CUB, h = 8). Each internal node contains a prototype (left)
and the training image from which it is extracted (right). The Mallard and Ruby Throated Hummingbird share the same
green-colored prototype.

4

Absent Present

Absent

Belted Kingfisher

Present

Absent Present

Absent Present

American Three-toed Woodpecker

Absent

Shiny Cowbird

Present

White-necked Raven

Absent

Least Auklet

Present

Warbling Vireo

Absent

Anna Hummingbird

Present

Canada Warbler

Absent

Cliff Swallow

Present

Figure S5: Subtree of a ProtoTree (CUB, h = 10). The Anna Hummingbird is recognized by its specific, long bill. Generally,
a higher maximum height h results, after pruning, in a less balanced tree.

Figure S6: Local explanation for classifying a test image of a Tree Swallow. Interestingly, the 6th prototype could be detected
in the test image because of the white-colored chest or because of the similarity with the curved branch. An explanation as
presented by [7] to indicate whether color hue or shape is important, could clarify this.

5

Absent Present

Absent Present

Absent

Chestnut-sided Warbler

Present

Mourning Warbler

Absent

Hooded Warbler

Present

Yellow-throated Vireo

Absent

Blue-winged Warbler

Present

Absent

Pine Warbler

Present

Nashville Warbler

Absent

Canada Warbler

Present

Figure S7: Subtree of an automatically visualized ProtoTree (CUB, h = 8). A ProtoTree hierarchically clusters similar
classes, in this case Warblers.

Present

Absent

Baird Sparrow

Present

Absent

Purple Finch

Present

Absent

Vesper Sparrow

Present

Chipping Sparrow

Absent

Fox Sparrow

Present

Figure S8: Subtree of a ProtoTree (CUB, h = 9). The
top node clusters birds with red legs and a light colored
abdomen. Pruning can result in a deep, imbalanced tree.

Absent

Toyota Sequoia SUV 2012

Present

Absent

Jeep Liberty SUV 2012

Present

Jeep Grand Cherokee SUV 2012

Absent

Jeep Patriot SUV 2012

Present

Figure S9: Subtree of a ProtoTree (CARS, h = 10) which
clusters similar SUV’s. Here, pruning results in an imbal-
anced tree.

6

Absent Present

Absent

Jaguar XK XKR 2012

Present

Bugatti Veyron 16.4 Convertible 2009

Absent

Lamborghini Diablo Coupe 2001

Present

Absent

Spyker C8 Convertible 2009

Present

Audi S5 Convertible 2012

Absent

Aston Martin Virage Convertible 2012

Present

Figure S10: Subtree of a ProtoTree (CARS, h = 9) with convertibles clustered on the right. Each internal node contains a
prototype (left) and the training image from which it is extracted (right).

Absent Present

Absent Present

Absent

 Chevrolet Silverado 2500HD
 Regular Cab 2012

Present

Absent

Dodge Ram Pickup 3500 Quad Cab 2009

Present

 Chevrolet Silverado 1500
 Hybrid Crew Cab 2012

Absent

HUMMER H3T Crew Cab 2010

Present

 Chevrolet Silverado 1500
 Regular Cab 2012

Absent

Volvo C30 Hatchback 2012

Present

Absent

Chevrolet Express Van 2007

Present

Absent

Dodge Sprinter Cargo Van 2009

Present

Ford F-450 Super Duty Crew Cab 2012

Absent

Chevrolet Express Cargo Van 2007

Present

Figure S11: Subtree of a ProtoTree (CARS, h = 11). Vans are clustered on the right, and pickup trucks on the left.

Figure S12: Local explanation for classifying a test image of a Dodge Sprinter Cargo Van 2009 (CARS, h = 11), recognizable
by the black stripe on the side.

7

Figure S13: Local explanation for classifying a test image of a Bentley Continental GT Coupe 2007 (CARS, h = 11).

Absent Present

Absent

Audi S5 Convertible 2012

Present

Absent

Jaguar XK XKR 2012

Present

Absent

Aston Martin Virage Coupe 2012

Present

Dodge Charger SRT-8 2009

Absent

Chevrolet Corvette Ron Fellows Edition Z06 2007

Present

Mercedes-Benz SL-Class Coupe 2009

Absent

Ferrari 458 Italia Convertible 2012

Present

Figure S14: Subtree of a ProtoTree (CARS, h = 10). The top node clusters two cars that are styled with similar feature lines
on the hood. The Audi is recognized by its logo.

Absent Present

Absent Present

Absent Present

Audi 100 Sedan 1994

Absent Present

Chevrolet HHR SS 2010

Absent

Chevrolet Tahoe Hybrid SUV 2012

Present

AM General Hummer SUV 2000

Absent

Chevrolet Silverado 1500 Extended Cab 2012

Present

Nissan NV Passenger Van 2012

Absent

Ram CV Cargo Van Minivan 2012

Present

Absent

Dodge Sprinter Cargo Van 2009

Present

Chevrolet Express Cargo Van 2007

Absent

Chevrolet Express Van 2007

Present

Figure S15: Subtree of a ProtoTree (CARS, h = 10). Similar vans are clustered on the right. Chrevrolets are recognized by
their distinctive back.

8

References
[1] Chaofan Chen, Oscar Li, Daniel Tao, Alina Barnett, Cynthia

Rudin, and Jonathan K Su. This looks like that: Deep learn-
ing for interpretable image recognition. In H. Wallach, H.
Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R.
Garnett, editors, Advances in Neural Information Processing
Systems 32, pages 8930–8941. Curran Associates, Inc., 2019.
1

[2] Chaofan Chen, Oscar Li, Daniel Tao, Alina Barnett, Cynthia
Rudin, and Jonathan K Su. This looks like that: Deep learn-
ing for interpretable image recognition. In H. Wallach, H.
Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R.
Garnett, editors, Advances in Neural Information Processing
Systems 32, volume Supplement S9, pages 8930–8941. Cur-
ran Associates, Inc., 2019. 1

[3] Ekin D. Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasude-
van, and Quoc V. Le. Autoaugment: Learning augmentation
strategies from data. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR),
June 2019. 1

[4] Xavier Glorot and Yoshua Bengio. Understanding the diffi-
culty of training deep feedforward neural networks. In Pro-
ceedings of the thirteenth international conference on artifi-
cial intelligence and statistics, pages 249–256, 2010. 1

[5] Tong He, Zhi Zhang, Hang Zhang, Zhongyue Zhang, Jun-
yuan Xie, and Mu Li. Bag of tricks for image classification
with convolutional neural networks. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 558–567, 2019. 2

[6] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 1

[7] Meike Nauta, Annemarie Jutte, Jesper Provoost, and Christin
Seifert. This looks like that, because ... explaining prototypes
for interpretable image recognition, 2020. 4, 5

[8] L. N. Smith. Cyclical learning rates for training neural net-
works. In 2017 IEEE Winter Conference on Applications of
Computer Vision (WACV), pages 464–472, 2017. 1

[9] Boyan Zhou, Quan Cui, Xiu-Shen Wei, and Zhao-Min
Chen. Bbn: Bilateral-branch network with cumulative learn-
ing for long-tailed visual recognition. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 9719–9728, 2020. 1

9

