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A. Experiments
A.1. DensePose-LVIS v1.0 dataset details

We introduce DensePose-LVIS v1.0 dataset, an extended
version of the DensePose-LVIS data of [7]. We improve the
quality of the existing labels and expand the DensePose an-
notation pool for the same animal classes as in the previous
version of this dataset [7]. In Tab. S1 we report the num-
ber of train and test instances annotated with DensePose in
every category.

category DensePose-LVIS DensePose-LVIS v1.0

train, inst. test, inst. train, inst. test, inst.

dog 483 200 1607 316
cat 586 200 1912 379
bear 98 200 735 132
sheep 257 200 1655 350
cow 426 200 2105 340
horse 605 200 2292 458
zebra 665 200 2864 556
giraffe 651 200 2709 534
elephant 670 200 2839 539

all 4441 1800 18718 3604

Table S1: DensePose-LVIS v1.0 dataset: 3.6x increase in
a number of annotated instances, better quality of labels.

A.2. 3D mesh alignment

If not stated otherwise, we used cross-validation to find
the m2m loss weight that maximizes AP metric after train-
ing. Additionally we also cross-validated the m2m loss
weight to minimize the GErr, we denote this experiment
as m2m*. As mentioned in the caption of Fig. 4, the op-
timal weight of m2m term is tenfold larger for GErr than
for AP. Visual mappings in Fig. 4 correspond to the m2m
model.

A.3. Keypoint transfer

For keypoint transfer experiments we train our models
on DensePose-LVIS v1.0 dataset and do not use any PAS-
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method animal category mean
HORSE COW SHEEP CAT DOG

our baseline 58.1 49.9 43.9 41.6 41.9 47.1
w/ m2m 57.1 49.5 45.1 40.0 42.5 46.8
w/ i2m 59.0 51.1 46.2 45.9 45.7 49.7
w/ i2m-all 59.2 51.5 46.3 46.5 45.9 49.9
w/ m2m+i2m 57.7 49.9 44.8 40.6 42.4 47.1
w/ m2m+i2m-all 57.8 50.2 44.9 40.6 42.6 47.2

Table S2: Keypoint transfer on PASCAL VOC, within
each of training animal categories. PCK-Transfer metric,
higher is better. m2m term is not helpful for this task.

CAL VOC [1] images during training. We select animal cat-
egories from PASCAL VOC [1], overlapping with animal
categories in DensePose-LVIS v1.0: horse, cow, sheep,
cat, dog. Following Kulkarni et al. [3], we randomly
sample 100 images for each category from PASCAL VOC
mentioned above and use them for evaluation. We average
PCK-Transfer score across all possible (source, target) im-
age pairs.

We conducted keypoint transfer experiments using three
distinct settings:

(a) Within each category observed at training time, when
source and target images are from the same category
(Tab. 3 in the main paper);

(a) Across training categories (Tab. 4, I in the main paper).
In this case source and target images are from different
training categories. For example, keypoints from dog
images are transferred to images from horse, cow,
sheep, and cat categories;

(a) Zero shot scenario: Within new animal categories not
observed at training time (Tab. 4 II in the main paper).
In this case, we remove ground truth dense correspon-
dences for one class from the training set and evalu-
ate keypoint transfer on the images within the removed
class. Note that we do not remove bounding boxes and
object instance masks from training set and still use
them to train our detection and segmentation heads.
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method target class HORSE COW SHEEP CAT DOG mean

our baseline single 28.8 27.3 33.7 31.1 29.4 30.0
w/ i2m single 30.1 28.2 34.1 31.9 29.7 30.8

Table S3: Effect of i2m loss term when trained and evaluated on individual categories of DensePose-LVIS v1.0. We
report DensePose AP score.

method target class HORSE COW SHEEP CAT DOG mean

Rigid-CSM + keyp. [4] single 42.1 28.5 31.5 – – –
A-CSM + keyp. [3] single 44.6 29.2 39.0 – – –

our baseline single 53.4 48.0 38.8 40.9 34.0 43.0
w/ i2m single 54.0 49.1 39.2 34.7 44.2 44.2

Table S4: Keypoint transfer on PASCAL VOC, when trained and evaluated on individual categories. PCK-Transfer
metric, higher is better.

In Tab. S2 we show results for all combinations of the
loss terms on keypoint transfer within each category. The
i2m term enforces alignment on image level which is more
important for the task of within-category keypoint transfer,
while the m2m loss term is not helpful in this case as it
enforces the alignment between 3D templates.

A.4. Effect of i2m loss in a single-class training sce-
nario

In contrast to our approach, Rigid-CSM [4] and A-
CSM [3] cannot learn multiple animal categories in a single
model and have to train separate models for every animal
class. To make our setup closer to those in [4, 3], we trained
our models on individual categories from DensePose-LVIS
v1.0 as well (i.e., trained a new model for each class). Then
we evaluated each model on the corresponding individual
categories: (a) on the test set of DensePose-LVIS v1.0
by computing DensePose AP score (see Tab. S3); and (b)
on PASCAL VOC by computing PCK-Transfer metric for
Keypoint Transfer task (see Tab. S4). From the tables S3, S4
we can see that i2m improves the performance even when
trained and evaluated on individual categories and outper-
forms methods [4, 3] (we used the results reported in the
corresponding papers). However, a part of the strength of
our method comes from training on several classes jointly,
which results in even stronger performance of our models
(see Tab. 3 in the main paper).

A.4.1 Can the i2m loss be used in combination with
Rigid-CSM [4] or A-CSM [3] models?

Our i2m loss requires every pixel and every vertex of the
mesh to be embedded in a common embedding space. How-
ever, models [4, 3] directly predict (u, v) coordinates for
every pixel. Therefore our loss cannot be applied during
training of Rigid-CSM [4] and A-CSM [3].

A.5. Evaluation metrics

For completeness, we provide brief descriptions of
AP/AR metrics used for evaluation of learned dense pose
predictions on DensePose-LVIS v1.0 dataset and cross-
category mesh alignment metrics GErr, GPS.

• GPS (Geodesic Point Similarity) [2] is a correspon-
dence matching score indicator of the quality of align-
ing of two sets of vertices A = (a1, . . . , aN ) and
B = (b1, . . . , aN ) on a mesh.

GPS(A,B) =
1

N

N∑
i=1

exp

(
−g(ai, bi)2

2κ2

)
,

where N is the number of vertices in each set, g(·, ·)
is the geodesic distance between two surface points,
and κ is a normalization constant. To make our GPS
score comparable to the GPS score used for Human
DensePose evaluation in Guler et al. [2], we normal-
ize all vertex coordinates in every animal mesh to
have the maximum geodesic distance dmax = 2.27,
which is equal to the maximal geodesic distance in the
SMPL [6] mesh of a human utilized in [2]. We set
κ = 0.255 so that a single point has a GPS value
of 0.5 if its geodesic distance from the ground truth
equals the average half-size of a body segment. When
we evaluate cross-category mesh alignment quality, we
compute GPS between a set of the ground truth se-
mantic keypoints on a target mesh and the estimated
locations of these keypoints obtained by transferring
keypoints from a source mesh of other category. The
mean GPS score is then computed as an average
across all possible (source, target) pairs of categories.

• Similarly to Geodesic Point Similarity, we define
GErr (Geodesic Error), the error between two sets of
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vertices along the surface of a mesh. Before comput-
ing this error, all vertex coordinates are normalised to
have the maximum of geodesic distance dmax = 2.27
(similar to [2, 7]).

GErr(A,B) =
1

|N |

N∑
i=1

g(ai, bi).

Analogously to GPS, we use GErr to estimate the
quality of inter-category mesh alignment by comparing
the ground truth semantic keypoints on a target mesh
and the estimated locations of these keypoints obtained
by transferring keypoints from a source mesh of other
category.

• To evaluate the quality of mapping from image pixels
to 3D vertices on the category-specific mesh, we use
AP (Average Precision) and AR (Average Recall) [2].
The location of the vertices on the mesh corresponding
to image pixels are estimated by finding for every pixel
the most similar mesh vertex in the learned embedding
space. After that we compare estimated vertex loca-
tions with the ground truth using GPS metric. Then
we calculate AP and AR at different GPS thresholds
ranging from 0.5 to 0.95, following the COCO chal-
lenge protocol [5]. We separately report Average Pre-
cision and Average Recall at GPS thresholds equal to
0.5 and 0.75, denoted as AP50,AP75,AR50,AR75. In
addition to this we separately compute Average Pre-
cision and Average Recall for instances with medium
and large sizes (APM ,ARM for medium size and
APL,ARL for large).

Note, that we report GPS× 100 and GErr× 100 in all
tables in the main paper.
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