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1. Visualization of Multi-level Interpolation 17
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Figure 1. Visualization of features in different levels. The fea-
tures of interpolated intensity are marked with the green boxes.
(a) Low-level interpolated features present more details. (b) High-
level interpolated features contain more structure characteristics.

For better understanding our multi-level interpolation,
we visualize the interpolated features in PGM, as marked
with the green boxes in Fig. 1. They are the interpolation
effects of features in two branches of PGM (corresponding
to rain intensities of 100mm/hr and 200mm/hr). Then the
interpolated features of PGM in different levels are com-
pared. The low-level features are shown in the Fig. 1(a). It
can be seen that, the interpolation in low level tends to gen-
erate detailed information of intermediate intensity, such as
the rain streaks in small scales. While in high-level interpo-
lated features, structure characteristics of intermediate in-
tensity are rendered, such as big rain streaks and the overall
background brightness, as shown in Fig. 1(b). Therefore,
the interpolation on multiple levels can better extract dif-
ferent features ranging from low level to high level, which
promotes the generation of different scales of rain streaks.

2. RainLevel5 Dataset

To show our dataset RainLevel5, we present some exam-
ples of rain images and rainless fog images at two different
intensities, as shown in Fig. 2.

Considering the limited color diversity of our original
training images, during the training of stage II, the input and
output rain images are randomly transformed to the other
hue with 50% probability in order to realize data augmen-
tation. The rain images with original hue and transformed
hue are shown in Fig. 3.
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Figure 2. Examples of RainLevel5. Rain and fog images are sim-
ulated in 5 intensities, i.e. (a) 50mm/hr and (b) 200mm/hr.

(a) original hue (b) transformed hue

Figure 3. Data augmentation during training by random selection
of (a) original hue and (b) transformed hue.

3. Ablation Study in Rain Removal

Table 1. Ablation study in deraining on synthetic datasets.
RainLevel5

Methods No DB Random Incremental Ours
PSNR 35.78 36.13 35.38 37.81

SSIM 0.982 0.976 0.981 0.985

Rain12000 [1]

Methods No DB Random Incremental Ours
PSNR 32.13 32.23 32.50 32.67

SSIM 0.883 0.884 0.888 0.892
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Effectiveness of Network Architecture To prove the de-
raining ability of the dense blocks in the coarse module of
BEN, the results without the dense blocks are shown in Ta-
ble 1 (represented as No DB). Both in the two synthetic
datasets, our final architecture (Ours) gets better deraining
results in PSNR and SSIM.

Effectiveness of Decremental Training The rain re-
moval effects of random, incremental and our decremental
training strategies are also compared. As shown in Table 1,
both the results of random and incremental training strat-
egy are inferior to our method, which further demonstrates
the ability of the decremental training strategy in bringing a
better deraining performance.
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• 结果：

(c) Ground Truth (d) With HOG Loss (e) Without HOG Loss
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Figure 4. Comparison of results w/o HOG loss. (a) Input rain im-
age, (b) comparison in HOG among gradient images of (c) ground
truth, (d) result with HOG loss, and (e) result without HOG loss.
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(a) With Autocorrelation Loss
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(b) Without Autocorrelation Loss

Figure 5. Comparison of results w/o autocorrelation loss. The rain
image and corresponding autocorrelation along x and y direction
are compared between the result (a) with autocorrelation loss, and
(b) without autocorrelation loss (peaks marked with red points).

4. Ablation Study of Loss Function
In this section, we further demonstrate and illustrate the

effectiveness of our HOG loss and autocorrelation loss. As
shown in Fig. 4, the result with HOG loss shows a more
similar orientation distribution with the ground truth, com-
pared with the one without HOG loss. It can also be seen in
the HOG comparison in Fig. 4(b). Additionally, as shown
in Fig. 5, fewer repetitive rain streaks appear with the auto-
correlation loss, which is also demonstrated in the smoother
autocorrelation curve in Fig. 5(a), compared with the obvi-
ous peaks in Fig. 5(b).

5. Comparison of BEN and MCN at 0 intensity
We compare the deraining results of BEN and MCN at

0 intensity in Tab. 2. As shown, the PSNR/SSIM of BEN
and MCN (0mm/hr rain) are almost the same. MCN at 0
intensity achieves better performance on perceptual metric
compared with BEN because the training of MCN at inten-
sity 0 alternates with the training at other intensities, which
introduces more information of photorealism. Note that for
NIQE, the smaller the better.

Table 2. Comparisons between BEN and MCN at intensity 0.
Metric PSNR SSIM NIQE FSIM
BEN 37.81 0.985 2.766 0.983
MCN 37.28 0.972 2.664 0.986

6. More Results on Real and Synthetic Data
To further demonstrate the rain controlling ability of our

method, here we show more rain control results in Fig. 6.
As can be observed, ranging from rain images in real world
to synthetic rain images in RainLevel5 and Rain12000 [1],
with a single rain image as input, the intensity of rain can
be adjusted arbitrarily, with the same scene-specific charac-
teristics as the input rain image.
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Figure 6. Bi-directional rain control results on (a) real-world rain images and synthetic rain images in (b) RainLevel5 and (c) Rain12000 [1].


